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Abstract:  This paper considers the problem of how to determine an optimal fueling schedule and 

contracting policy with fuel suppliers so as to minimize the total cost of the fueling operation. The 

problem is formulated as a mixed integer program and the formulation is enhanced by valid 

inequalities and domination rules. The enhanced model allows us to obtain near optimal solutions for 

large scale instances. 
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1. Introduction  
The refueling operation represents a significant share of the operational costs in the transportation 

industry and in particular in railway transportation, see Gray ‎[1]. The refueling cost consists of three 

components: 1) the cost of the fuel; 2) indirect costs caused by the delay of trains when their 

locomotives are being refueled or waiting to be refueled; 3) the contracting cost paid to owners of 

tanker trucks that deliver the fuel to the various yards. Fuel prices and the contracting costs vary 

across locations due to transportation costs from the refineries, local taxes, competitiveness of the 

regional market and other factors. The delay cost is determined by various characteristics of the train 

being delayed and of the yard. 

Fueling at each yard is carried out by tanker trucks contracted on a yearly or quarterly basis. A 

typical truck can provide a given volume of fuel per day. This figure is affected by the proximity of 

the yard to the nearest refinery. The railway company may contract several trucks at a yard to allow 

provision of a larger amount of fuel. The railway planner simultaneously decides how many tanker 

trucks and in which yards to contract and where to refuel each locomotive along its prescheduled 

itinerary. 

A simplified version of this problem was introduced as a challenge for the 2010 Problem Solving 

Competitions of INFORMS Railway Application Section (RAS) ‎[2]. The authors of this paper won 

the competition. A similar problem was studied by Nourbakhsh and Ouyang [3], where a heuristic, 

based on a Lagrangian relaxation was presented. Their paper contains a comprehensive review of 

recent literature on various refueling problems.  

Previously introduced methods could not solve large real world instances of the locomotive fleet 

fueling problem to exact optimality. The main contribution of this paper is in presenting a tight 

mathematical formulation that enables the solving of such instances with negligible optimality gap.  

The rest of this paper is organized as follows: In Section 2, the fleet fueling problem is formally 

defined, mathematically formulated, and proven to be NP-Hard. In Section 3, this formulation is 

enhanced by several sets of strong valid inequalities and domination rules. Possible extensions of the 

problem that may be applicable for various practical situations are introduced in Section 4. Section 5 

demonstrates the effectiveness of the proposed method using a numerical study. 
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2. Notation and mathematical formulation 
The fleet refueling model consists of two basic entities: yards and locomotives. Each yard is 

characterized by its fuel cost and by the amount of dispensable fuel per tanker, if contracted. Each 

locomotive is characterized by its schedule for the planning horizon. The schedule is described by a 

sequence of stops. Each stop is characterized by yard, date, fuel consumption (for the journey to next 

stop) and delay cost (to be charged if the locomotive refuels at this stop).  

The delay cost is related to the stops because it corresponds to the value of the train being pulled 

by the locomotive at the particular time of each stop. For example, if the locomotive is scheduled to 

dwell at the station for some time, the delay cost may be zero. For similar considerations, the fuel 

consumption is stop-related as well. This representation allows us to abstract the physical topology 

of the railway network from the mathematical model, thus simplifying the notation. 

The fleet refueling problem is to minimize the total fuel, delay and contracting costs subject to 

capacity constraints of the locomotives tanks and the contracted tankers. The decision variables are 

the number of tankers to be contracted at each yard and the amount of fuel that each locomotive has 

to acquire at each stop. Next, the notation required to formulate this problem as an integer 

programming model is presented. 

 

Indices 

   Locomotive 

   Stop of a locomotive (the stops are indexed 1,2,…) 

   Yard 

   Days 

 

Summation and quantification over these indices are assumed to refer to all related entities unless 

otherwise stated. 

 

Parameters 

  Length of the planning horizon (days) 

     Delay cost of locomotive   at stop    

    Capacity (gallons) of the fuel tank of locomotive   

    Amount (gallons) of fuel that can be dispensed by truck tank each day. This parameter 

is referred to, in short, as the tanker truck capacity. 

    Contracting cost ($) of a truck at yard   for the planning horizon 

      Fuel consumption (gallons) of locomotive   on its journey from stop   to     

   Fuel price ($/gallon) at yard   

   Number of stops of locomotive   in the planning horizon 

          Yard of the     stop of locomotive   

         Day in which the     stop of locomotive   occurs. 

 

Decision Variables 

     Binary variable that equals 1 if locomotive   refuels at its     stop 

   Integer variable that denotes the number of fuel tanks to be located at yard   

     Amount of fuel acquired by locomotive   at its     stop. 

     Amount of fuel in the tank of locomotive   upon arrival at its     stop. The value of      is 
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a fixed parameter.  

 

A MILP formulation of the problem is presented next, 

         ∑      

 

 ∑(                         )

   

 
(1) 

Subject to  

                                                 (2) 

                         (3) 

                            (4) 

∑     
                               

                  
(5) 

                                        (6) 

The objective function (1) sums over the three types of costs: namely tanker truck contracting 

costs, delay costs and total cost of acquired fuel. Constraints (2) are inventory balance equations that 

update the amount of fuel in the locomotive tank at each stop based on the fuel consumption since 

the last stop and the amount of fuel acquired there. Constraints (3) define the capacity of the 

locomotives tanks. Constraints (4) stipulate that a fixed fueling cost is charged whenever a 

locomotive fuels at a certain stop. Constraints (5) assure that the number of tanker trucks contracted 

for each yard is enough to provide the amount of fuel acquired at the yard during each day of the 

planning horizon. Integrality and binarity of      and    are determined in Constraints (6). The non-

negativity constraints of      stipulate that the locomotives never run out of fuel. The non-negativity 

of      implies that the locomotive cannot discharge fuel to the tanker trucks. The computational 

complexity of this problem is studied next: 

Proposition 1: The locomotive fleet fueling problem is strongly NP-Hard and APX-Complete. 

Proof: We use a reduction from the minimum vertex cover problem. Recall that a vertex cover of a 

graph         is a subset      such that for each edge {   }    at least one of   and   

belongs to   . A minimum vertex cover of a graph is a vertex cover    of minimum cardinality. This 

problem is known to be NP-Hard ‎[5] and APX-Complete, see Papadimitriou and Yannakakis ‎[6].  

Consider an instance         of the minimum vertex cover problem and construct an instance 

of the locomotive fleet fueling problem in the following manner:  a yard for each vertex in   and a 

locomotive for each edge {   }   . Each locomotive starts at yard  , goes to   and then back to  . 

The initial fuel inventory of each locomotive is half of its tank capacity.  The fuel consumption for 

the segment between   and    is half the locomotive tank for each direction. The fuel costs and 

contracting costs are equal for all yards. The delay costs are equal for all stops. The tanker truck 

capacity is set to the total capacity of the tanks of all the trains that pass via its corresponding yard, 

i.e., Constraint (5) is not binding. 

It is easy to see that in an optimal solution each locomotive refuels once either at its first stop at 

yard   or at its second stop at yard  . Now, since the fuel cost and delay cost are identical at both 

yards, an optimal solution is one that minimizes the number of contracted tankers.    
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3. Strengthening the formulation  
While the basic MILP formulation (1)-(6) is capable of obtaining feasible solutions of real life 

instances of the problem with an optimality gap of a few percent, closing this optimality gap may 

result in a substantial saving for the railway company. Next, several enhancements of the basic 

mathematical model that allows solving large instances of the problem with small optimality gaps 

are presented. 

The stops subsequence inequality – consider a sequence of stops         along the route of 

locomotive   such that the total amount of fuel consumed by the locomotive between stop       to 

     is greater than the capacity of the locomotive’s tank (that is ∑      
  
          ), but the total 

amount of fuel consumed between    and      is not (that is  ∑      
  
    

    ). In such a case the 

locomotive must refuel at least once in one of the stops        . Based on this observation the 

following inequalities can be added to the mathematical formulation:  

∑     

  

    

                      ( ∑      

  

      

    )      (∑      

  

    

    )  (7)

 

Similarly, it is possible to derive a yard subsequence inequality for each minimal sequence of 

yards along the route of each locomotive that requires at least one fueling operation and thus at least 

one tanker truck due to the same consideration as for the stops subsequence inequality.  These 

inequalities can be formulated as follows: 

 

∑   

                          

         

              ( ∑      

  

      

    )      (∑      

  

    

    )  

(8)

 

 

Stops per locomotive inequality – Let              denote a lower bound on the number of 

fueling operations that each locomotive needs to complete during the planning horizon in any 

feasible solution.  Clearly the following inequality is valid for each locomotive, 

 

∑    

  

   

                       (9)

 

A naïve approach to obtain               is by  

            ⌈
∑      

  
   

   

⌉    (10) 

However, note that it is not necessarily a tight bound. For example, if the route consists of four yards 

that are 
 

  tank apart, it is clear that the locomotive must be refueled at each station, i.e., three times, 

while the lower bound obtained from (10) is two. It is possible to cast the problem of calculating the 

tightest possible bound as a shortest path problem on a graph with a node for each stop of the 

locomotive. Thus the problem can be solved in polynomial time, see Khuller et al. ‎[4]. 
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A simple yet effective inequality is based on the fact that fueling at a station implies that at least 

one truck should be contracted there. The x → y inequality is formulated as follow for each stop of 

each locomotive 

                             (11)

 These inequalities are particularly strong for stops in infrequently visited yards, since the capacity of 

the locomotive tank is typically much smaller than the capacity of the tanker trucks. 

The v → x inequality is based on the observation that a locomotive must fuel at a stop if it 

arrives there with insufficient fuel to complete the journey to the next stop. 

  
    

     
                (12)

 
Next, constraints (3),(4), and (5) are further tightened.  Let 

   
     {    ∑     

  

   

}   

Replace (3) and (4) by  

             
            

 
(13)

 
and 

        
                (14)

 For (5) it is possible to replace the coefficient of    (currently    ) by 

∑     
                               

       {    ∑    
 

                            

}          (15)

 

 

The locomotive decomposition inequalities are based on a relaxation of the problems that 

ignores the contracting costs of the trucks and allows locomotives to be fueled at any yard. This 

enables the decomposition of the problem into a collection of computationally tractable sub problems 

of minimizing the total variable and fixed fueling cost of each locomotive. In Nourbakhsh and 

Ouyang ‎[3], a similar problem is cast as a shortest path problem and it is not difficult to accomplish 

this for the problem presented in this paper as well. Let us denote the value of the optimal solution 

for each locomotive by      . The following inequalities are valid, 

∑(                          )

 

                (16)

 
One can replace    by the sum of a vector of binary variables. That is    ∑     

  
    where    

is an upper bound on the number of trucks that should be contracted at yard   in an optimal solution. 

A simple way to obtain    is by assuming that a full locomotive tank is dispensed in all locomotive 

stops. That is,  

      
 

∑ ⌈   
     ⌉

                            

  

Now the symmetry breaking constraint             can be added for all   and           . 

While this modification of the model alone does not affect the lower bound obtained by the LP 

relaxation, it enhances the effect of the set of inequalities presented next. 
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Locomotive-Yard-Fuel inequality- Let          be an upper bound on the total amount of fuel 

that locomotive   can acquire in yard   throughout the planning horizon in any feasible solution.  The 

following inequality is valid for any yard   and locomotive   that patronizes the yard. 

∑     
             

                           (17)

 
Note that in general          is less than the total amount of fuel consumed by the locomotive since 

some sections of the locomotive tour may be too far from the yard to be served by the fuel acquired 

there. Such a tight upper bound can be calculated in linear time  

Finally, a method to exploit dominations that are likely to occur in instances of the problem is 

presented. To this end, let us define the notion of non-binding dominating yards. 

A yard   is considered non-binding if the total amount of fuel that can be acquired from the yard 

during each day of the planning horizon in any feasible solution is not greater than the capacity of a 

single tanker truck. That is,  

   
 

∑    
 

                            

       

A yard   is said to dominate locomotive   if there is an optimal fueling plan for  , i.e. with cost 

     , in which the locomotive fuels only at yard  . For any locomotive   that admits a non-binding 

dominating yard   let      be a set of stops in yard   that realizes such an optimal plan. The 

equalities 

                  (18) 

stipulate this optimal plan if a truck is contracted in the yard. These equalities are valid in the sense 

that they may eliminate some but not all of the optimal solutions. Removing many weakly dominated 

solutions from the search space is obviously desirable. Note that in many practical instances 

locomotives are scheduled to repeatedly cycle between few yards making it likely that the yard with 

the lowest fuel cost in the cycle will indeed dominate all locomotives in the cycle. If a locomotive is 

dominated by two or more different yards, the above equality should be added only for one of these 

yards. 

Recall that the optimal solution for each locomotive separately is calculated for the locomotive 

decomposition inequality as described above. Thus, checking domination can be accomplished easily 

in polynomial time. 

4. Extensions 
In this section several practical extensions of the problem are introduced. It is shown how to 

incorporate these extensions in the MILP model (1)-(6). The implications of these modifications on 

the valid inequalities presented in Section 3 are discussed.  

Some railway companies operate their locomotive fleet according to a cyclic schedule that 

repeats, for example, every two weeks. Such a schedule can be easily handled by adding the 

following constraints: 

          
      

       
                

where       
 represents the fuel consumption of locomotive i in its journey from the last stop of a 

cycle to the first in the next one. In this case, there is no “initial inventory” of fuel and thus      is a 

decision variable rather than a parameter. The valid inequalities presented in the previous section are 

readily adaptable to this cyclic formulation. Using a cyclic schedule makes sense if one wishes to use 
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the model for the long term contracting decisions, possibly where the detailed future locomotives 

schedule is unknown. 

Various useful operational rules can be expressed by constraints of the shape  

∑     

       

    (19) 

It can be used, for example, to enforce limitations on the number of refueling operations a 

locomotive is permitted per day.  Other possible uses can be to limit the number of trains that are 

allowed to refuel on the same day in a particular yard, in order to avoid congestion.  All the 

inequalities introduced in Section 3 are still valid with these new constraints. The dominations rules 

(18) are also applicable but consistency with the new constraints should be tested for the sub-

problems as well. 

When a locomotive runs out of fuel, the railway may order a special delivery to its location. The 

cost of fuel delivered by this mode is significantly higher than fuel provisioned by the contracted 

trucks. Hence, this procedure is typically reserved for emergencies and is not part of the railway 

fueling plan. Indeed, Sonami ‎[7] confirms that “while special deliveries may be used when 

locomotives run out of fuel unexpectedly, this practice is not a part of the railway master plan”. 

However, if one wishes to allow such “planned” emergency fueling it can be incorporated in the 

mathematical model presented in this paper, as shown in the appendix. 

Some railway operators own fixed refueling facilities at some of the most frequented yards. The 

capital and operational cost of these facilities can be considered sunk costs for the time horizon that 

is relevant for the contracting decisions. In addition, the amount of fuel that can be provisioned by 

these facilities is non-binding. Clearly, it makes no sense to contract tanker trucks at these locations 

but the existence of fixed facilities affect the fueling plan and the optimal contracting decisions 

throughout the system. In order to accommodate a fixed facility in yard  , it is merely required to set 

its contracting cost,     to zero.   

5. Numerical experiment 
This section presents the results of some numerical experiments conducted in order to test the 

effectiveness of the developed valid inequalities. The model, including all the valid inequalities 

described in Section 3, and the sub-problems needed to generate some of these inequalities, were 

implemented in Ilog-OPL and solved using Ilog-Cplex 12.1.  The experiments were run on an Intel 

Xenon X3450® 2.67GHz workstation with 16GB of RAM. 

The first tested instance was introduced as a challenge by the 2010 RAS problem solving 

competition and is available via the INFORMS RAS website. It is characterized by a fourteen day 

cyclic schedule. The schedule of each locomotive is divided into fourteen "runs" and the number of 

refueling operations during each run, not including the origin stops, is limited to two. This limitation 

is a special case of (19). The instance consists of 74 yards, 214 locomotives and some 5264 stops. 

The delay cost is $250 for all stops, the contracting cost is $8000, the tanker truck capacity is 25000 

gallons/day, and the locomotive tank capacity is 4500 gallons.  

This instance was solved using the enhanced model with an optimality gap of $0.30 out of total 

cost of more than 11 million dollars. While it took some 24 hours to establish this optimality gap, the 

best solution, as well as an optimality gap of 0.01%, was obtained in less than five minutes. 

The next 48 instances are based on random networks of 75, 100 and 125 yards. Twelve day 

cyclic schedules of 5000 and 10000 stops were randomly generated.  For each combination of these 
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factors, two possible uniform values were selected for the contracting costs ($5000 and $7000), 

tanker truck capacities (25000 and 50000 gallons), and locomotive tank capacities (3500 and 5500 

gallons). The delay cost in all stops was set to $250.  

In order to examine the effectiveness of the valid inequalities, both the basic model (1)-(6) and 

the enhanced model, described in Section 3, were solved. The solver optimality tolerance was set to 

zero and one hour was allocated for each run. In addition, the linear relaxations of both models were 

solved in order to estimate the effect of the valid inequalities.  Table 1 below summarizes the results 

of this experiment. In the first column of the table the characteristics of each instance are presented. 

The lower bounds obtained by the LP relaxation of the basic and enhanced models, at the root node, 

are presented in the next two columns.  The next four columns present the best integer solutions and 

lower bounds obtained by both models.  The next column presents the fraction of the optimality gap 

of the basic model closed by the enhanced one. That is 

   
                                            

                                        
  

The difference between the value of the solution obtained from the basic and enhanced models is 

presented in the rightmost column. This amount represents the actual saving in dollars per (twelve 

day) planning period as a result of employing the enhanced model.  

A constant that represents a naïve lower bound was subtracted from the objective function. This 

bound is based on the following “back of the envelope calculation”: 

   
 

{  }  ∑     

   

 ∑
∑           

 
{    }

   
 

    
 

{
   

      
}  ∑     

   

  

The first term is a lower bound on the total fuel cost; the second is a lower bound on the total delay 

cost and last one is a lower bound on the total contracting cost. By subtracting this lower bound the 

value of the objective function is scaled to the amount of money that is “left on the table” and can be 

potentially saved. 

Instance properties LP relaxation 
MILP solution after an hour 

Basic Enhanced 

% Gap 

closed 

Absolute 

improve-

ment 

$  

Stops/Yards/ Contracting cost/ 

Tanker capacity/ 

Locomotive capacity 

Basic Enhanced Solution Rel.  

gap 

Solution Rel. 

gap 

5000/75/5000/25000/3500 399,769.04 631,574.04 652,900.78 12.79% 652,484.86 0.06% 99.53% 415.92 

5000/75/5000/25000/5500 370,257.99 506,825.10 511,701.75 11.40% 511,701.63 0.00% 100.00% 0.12 

5000/75/5000/50000/3500 395,263.95 655,953.21 685,029.31 14.30% 676,612.99 0.00% 100.00% 8416.32 

5000/75/5000/50000/5500 365,945.28 530,416.12 531,140.68 8.75% 531,080.80 0.00% 100.00% 59.88 

5000/75/7000/25000/3500 402,878.75 676,713.77 720,950.53 18.35% 703,240.57 0.01% 99.96% 17709.96 

5000/75/7000/25000/5500 373,277.10 540,871.49 545,180.94 13.21% 545,179.62 0.00% 100.00% 1.32 

5000/75/7000/50000/3500 397,252.06 710,844.61 771,489.12 19.34% 736,167.40 0.02% 99.90% 35321.72 

5000/75/7000/50000/5500 367,804.21 573,855.10 575,434.17 11.63% 574,143.65 0.00% 100.00% 1290.52 

5000/100/5000/25000/3500 444,912.30 690,428.72 708,750.19 11.75% 702,098.75 0.00% 100.00% 6651.44 

5000/100/5000/25000/5500 417,235.84 570,222.32 571,982.65 6.42% 571,010.81 0.00% 100.00% 971.84 

5000/100/5000/50000/3500 439,130.37 714,518.37 728,386.82 11.15% 726,188.39 0.00% 100.00% 2198.42 

5000/100/5000/50000/5500 413,197.28 594,311.97 598,005.02 7.02% 595,100.46 0.00% 100.00% 2904.56 

5000/100/7000/25000/3500 448,675.85 743,992.46 767,239.31 16.12% 757,241.83 0.00% 100.00% 9997.48 

5000/100/7000/25000/5500 420,181.74 611,023.29 615,159.65 9.05% 611,726.53 0.00% 100.00% 3433.12 

5000/100/7000/50000/3500 441,547.22 777,717.97 818,942.46 17.29% 790,967.34 0.00% 100.00% 27975.12 

5000/100/7000/50000/5500 414,881.01 644,748.80 645,789.72 8.59% 645,452.03 0.00% 100.00% 337.69 

5000/120/5000/25000/3500 425,896.82 695,672.39 715,111.20 14.87% 708,287.76 0.01% 99.97% 6823.44 

5000/120/5000/25000/5500 403,492.55 584,490.59 587,169.34 7.44% 585,430.46 0.00% 100.00% 1738.88 

5000/120/5000/50000/3500 421,389.98 719,656.41 748,718.90 16.13% 732,271.78 0.00% 100.00% 16447.12 

5000/120/5000/50000/5500 399,907.12 608,474.61 609,914.47 8.53% 609,414.47 0.00% 100.00% 500.00 

5000/120/7000/25000/3500 429,271.30 761,175.59 780,255.07 16.15% 776,584.55 0.00% 99.99% 3670.52 
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5000/120/7000/25000/5500 406,337.60 637,950.66 638,476.68 9.21% 638,476.68 0.00% 100.00% 0.00 

5000/120/7000/50000/3500 423,248.12 794,753.22 815,775.25 16.85% 810,162.17 0.00% 100.00% 5613.08 

5000/120/7000/50000/5500 401,356.35 671,528.28 673,793.19 11.06% 672,054.31 0.00% 100.00% 1738.88 

10000/75/5000/25000/3500 792,736.82 1,129,441.45 1,231,054.72 14.73% 1,165,331.02 1.41% 90.40% 65723.70 

10000/75/5000/25000/5500 742,934.58 897,612.90 914,060.68 7.01% 913,452.60 0.03% 99.61% 608.08 

10000/75/5000/50000/3500 787,895.02 1,170,348.05 1,207,180.46 11.02% 1,191,376.14 0.10% 99.05% 15804.32 

10000/75/5000/50000/5500 738,376.81 929,549.31 933,753.60 6.59% 933,659.20 0.00% 100.00% 94.40 

10000/75/7000/25000/3500 795,844.16 1,165,161.51 1,244,210.06 15.28% 1,201,940.00 1.20% 92.16% 42270.06 

10000/75/7000/25000/5500 745,925.46 928,707.20 949,433.36 8.77% 948,313.72 0.04% 99.59% 1119.64 

10000/75/7000/50000/3500 789,922.57 1,222,025.64 1,276,057.06 16.00% 1,244,024.30 0.17% 98.91% 32032.76 

10000/75/7000/50000/5500 740,260.05 973,646.57 978,089.76 8.83% 978,089.76 0.00% 100.00% 0.00 

10000/100/5000/25000/3500 852,860.72 1,193,190.51 1,237,057.92 11.40% 1,213,283.64 0.17% 98.47% 23774.28 

10000/100/5000/25000/5500 798,553.22 984,035.98 996,245.84 8.10% 989,203.20 0.07% 99.11% 7042.64 

10000/100/5000/50000/3500 848,517.12 1,237,540.28 1,366,695.81 17.02% 1,255,460.85 0.15% 99.10% 111234.96 

10000/100/5000/50000/5500 795,335.65 1,026,376.25 1,030,581.13 7.96% 1,028,271.33 0.00% 100.00% 2309.80 

10000/100/7000/25000/3500 855,671.98 1,239,521.63 1,310,691.36 15.45% 1,265,516.64 0.34% 97.81% 45174.72 

10000/100/7000/25000/5500 800,643.35 1,020,233.17 1,035,047.12 9.95% 1,026,382.08 0.01% 99.92% 8665.04 

10000/100/7000/50000/3500 850,443.54 1,301,242.49 1,478,010.27 22.26% 1,324,389.19 0.28% 98.74% 153621.08 

10000/100/7000/50000/5500 796,732.37 1,078,571.88 1,081,853.47 10.19% 1,080,340.23 0.00% 99.98% 1513.24 

10000/120/5000/25000/3500 850,716.01 1,229,651.83 1,314,945.40 14.95% 1,244,477.96 0.10% 99.31% 70467.44 

10000/120/5000/25000/5500 807,949.40 1,000,031.31 1,008,864.02 9.25% 1,006,078.22 0.09% 98.99% 2785.80 

10000/120/5000/50000/3500 847,008.85 1,276,986.99 1,323,262.89 13.06% 1,290,546.45 0.04% 99.71% 32716.44 

10000/120/5000/50000/5500 805,128.35 1,046,889.75 1,049,595.75 8.68% 1,047,534.43 0.00% 100.00% 2061.32 

10000/120/7000/25000/3500 853,298.04 1,291,053.96 1,350,564.26 16.02% 1,307,584.54 0.12% 99.25% 42979.72 

10000/120/7000/25000/5500 810,045.08 1,043,092.51 1,055,538.36 11.00% 1,048,933.20 0.09% 99.19% 6605.16 

10000/120/7000/50000/3500 848,539.91 1,356,721.52 1,411,993.29 17.22% 1,372,133.45 0.03% 99.82% 39859.84 

10000/120/7000/50000/5500 806,257.36 1,107,495.57 1,114,089.95 11.72% 1,107,988.03 0.00% 100.00% 6101.92 

Table 1: Results of computational experiment with up to 10000 stops and 125 yards 

It is apparent from Table 1, that the enhanced formulation delivers significantly better solutions 

and lower bounds compared to the basic one. Indeed, on average, 99.34% of the optimality gap was 

closed. Moreover, out of the 48 tested instances, 90.4% of the gap was closed in the worst case. The 

optimality gap delivered from the enhanced formulation is in most cases negligible with an average 

of 0.12% and 1.41% in the worst tested case while the optimality gap of the basic model gets as high 

as 22.26%.  

The best integer solutions that could be obtained using the enhanced model within one hour were 

strictly better than those obtained by the basic model in all but two cases (where both solutions were 

optimal). On average the difference was $18,100 per a twelve day planning period, which is 

equivalent to a yearly saving of more than $550,000. Given the low margins of profit in the railway 

industry this represents a substantial saving.  The difference between the solutions obtained by the 

basic and the enhanced model is statistically significant (p=0.5%). It is also apparent that the lower 

bounds obtained from the LP relaxation of the enhanced model are much stronger compared to the 

basic one. This explains the superior performances of the enhanced formulation. 

The effect of other parameters on the performances of the enhanced formulation was tested. The 

assumption that larger locomotive tank capacity (p=1.7%) and larger tanker truck capacity (p=3.9%) 

are associated with smaller optimality gaps was confirmed. Note that larger locomotive tank and 

tanker truck capacities are likely to allow more non-binding dominating yards.  However, the stops 

and yard subsequence inequalities, as well as the locomotive tank capacity constraint (4), are likely 

to be stronger if the locomotive tank capacity is smaller. 

We tried to compare the performances of our formulation to other solution approaches, such as 

the Lagrange relaxation heuristic introduced by Nourbakhsh and Ouyang ‎[3], but unfortunately we 

did not have access to their benchmark problem. Note that in ‎[3] much larger optimality gaps are 

reported for much smaller problem instances in similar settings. The benchmark instances and 

complete description of the results are available upon request from the authors.  
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Next, to see how this approach can be scaled up and to explore its limitations, larger instances 

with 196 yards and 30,000 stops were created. In this experiment, three hours per run were allocated. 

The results of this experiment are summarized in Table 2. 

 

Instance properties LP relaxation 
MILP solution after an hour 

Basic Enhanced 

% Gap 

closed 

Absolute 

improve-

ment 

$  

Stops/Yards/ Contracting cost/ 

Tanker capacity/ 

Locomotive capacity 

Basic Enhanced Solution Rel.  

gap 

Solution Rel. 

gap 

30000/196/5000/25000/3500 1,951,307.31 2,824,408.88 2,980,394.70 11.73% 2,955,328.76 3.14% 73.21% 25,065.94 

30000/196/5000/25000/5500 1,808,199.92 2,221,614.05 2,275,481.15 10.40% 2,265,728.95 1.36% 86.97% 9,752.20 

30000/196/5000/50000/3500 1,944,973.06 2,931,458.74 3,294,889.74 19.00% 2,977,706.48 0.34% 98.20% 317,183.26 

30000/196/5000/50000/5500 1,802,081.66 2,303,900.78 2,320,583.75 10.54% 2,314,743.63 0.07% 99.34% 5,840.12 

30000/196/7000/25000/3500 1,955,263.46 2,900,277.22 3,411,248.40 22.82% 3,026,971.94 2.73% 88.05% 384,276.46 

30000/196/7000/25000/5500 1,812,024.91 2,293,736.62 2,380,515.57 12.60% 2,350,832.11 1.77% 85.95% 29,683.46 

30000/196/7000/50000/3500 1,947,675.72 3,049,308.29 3,471,644.78 23.27% 3,106,246.42 0.53% 97.71% 365,398.36 

30000/196/7000/50000/5500 1,804,649.88 2,409,718.26 2,585,728.43 17.69% 2,422,122.11 0.12% 99.34% 163,606.32 

Table 2: Results of computational experiment with up to 30000 stops and 196 yards 

The relative optimality gap of the solutions delivered by the enhanced model, for the larger 

instances, is 1.26% on average (3.14% in the worst tested case). On average, the enhanced model is 

capable of closing 91.1% of the optimality gap left by the basic model. The solutions delivered by 

the enhanced model are all strictly better than those delivered by the basic one, with an average 

improvement of $162,600, which is equivalent to a yearly saving of about $4,945,000. 

In order to identify which of the proposed valid inequalities are most effective and whether it is 

worth omitting some of them, the following experiment was conducted: the eight, 10,000 stops / 120 

yards instances were solved with each of the nine valid inequalities separately. That is, the basic 

model supplemented by one set of inequalities at a time. The solutions obtained from these 

formulations were compared to the ones obtained for the same instances using the basic model. In 

addition, the enhanced model was solved with each of the sets of valid inequalities removed, one at a 

time. These solutions were compared to the solution obtained by the enhanced model. 

This experiment enables the observation of the marginal contribution of each set when added 

first or last to the model. The results of the experiment are reported in Table 3. Each row of the table 

refers to a single set of valid inequalities, specified in the first column. The second to fourth columns 

refer to the contribution of each set when added first and the last three columns refer to the 

contribution when added last. For each set the following is reported: 1) the average percentage of the 

optimality gap closed, 2) the average absolute improvement in the objective function value, 3) the 

number (count) of the instances, out of the eight tested, for which the addition of the set improved 

the value of the objective function. 

Name of inequalities Contribution when added first Contribution when added last 

% Gap 

closed 

Absolute 

improv. 

Improv. 

count 

% Gap 

closed 

Absolute 

improv. 

Improv. 

count 

Stops subsequence (7) -5.68% 2971.84 6 67.45% 538.60 6 

Yards subsequence (8) 36.94% 4135.07 5 0.90% -12.37 2 

Minimal number of fuels per locomotive (9) -12.52% 2385.67 5 12.73% 3.10 3 

x → y  (11) 41.10% 3599.39 5 73.94% 56654.79 6 

v → x (12) -263.75% -98804.03 0 0.74% 3.72 2 

Tightening constraints (3), (4) and (5), (13) - (15) 3.09% 316.87 5 6.37% 42.44 4 

Locomotive decomposition (16) 6.60% 1310.98 4 91.40% 38.98 4 

Locomotive-Yard-Fuel (17) 46.24% 2688.39 6 53.42% 373.92 6 

Non-binding dominating yards (18) 0.14% -171.29 5 0.63% -2.80 1 

Table 3:  Marginal contribution of each set of valid inequalities 
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One can observe that while the effect of each valid inequality alone is not dramatic, and in some 

cases even negative, there is a strong positive interaction among the inequalities. Indeed, on average, 

each one of the nine proposed valid inequalities contribute to the reduction of the optimality gap 

when added to all other inequalities. Hence, it is worth using all of these inequalities. Moreover, each 

of the valid inequalities strictly improves the obtained solution, at least for some instances when 

added last.  However, inequalities sets (8) and (18) slightly increase the average solution value. As a 

result, a slightly better solution is likely to be obtained without these inequalities but at the cost of a 

weaker lower bound. 

All the observations above are highly sensitive to the nature of the problem instances, to the 

technology and setting of the solver and to the allocated solving time. However, it is clear that all of 

the proposed inequalities may be useful for solving instances of the locomotives refueling problems. 

An interesting lesson from this numerical study is that effective MILP models, coupled with a 

carefully crafted set of valid inequalities and a modern solver, may be competitive with heuristic 

methods even for large scale NP-Hard problems. 
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Appendix – Emergency fueling  
The model presented in [3] allows emergency fueling by special deliveries to any point in the 

network in addition to fueling at yards, but with higher delay and fuel costs. The model, (1)-(6), can 

be  adapted to this problem by introducing two additional decision variables: 

   
   An integer variable that represents the number of emergency stops of train   along the 

segment between the     and         stop. 

   
   A continuous variable that represnts the amount of fuel acquired in emergency stops of train 

  along the segment between the     and         stop. 

The delay cost for emergency refueling is denoted by    and the price of fuel per gallon acquired in 

emergency refueling is denoted by    .   

         ∑      

 

 ∑(                                
        

 )

   

 (1’) 

Subject to  

                        
                                (2’) 

                             (3) 

                         
         

           
     (4’) 

∑     
                               

                  (5) 

         
                                   

         (6’). 

Note the slight modification in the objective function (1), inventory balance constraint (2), and 

constraint (4).  

Some of the valid inequalities presented in Section 3 can be used with this formulation as well, 

possibly with minor modifications. In particular, inequality (9) can be restated as follows:  

∑(         
 )

  

   

                       

   

Inequalities (11)-(15) can be left unchanged and it is also possible to introduce a new inequality in 

the spirit of (14): 

    
     

                

Inequality (16) can be reformulated as: 
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