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Abstract

We study unreliable serial production lines with known failure probabilities for
each operation. Such a production line consists of a series of stations; existing ma-
chines and optional quality control stations (QCSs). Our aim is to decide on the
allocation of the QCSs within the assembly line, so as to maximize the expected
profit of the system. In such a problem, the designer has to determine the QCS con-
figuration and the production rate simultaneously. The profit maximization problem
is approximated assuming exponentially distributed processing times, Poisson ar-
rival process of jobs into the system and the existing of holding costs. The novel
feature of our model is the incorporation of holding costs which significantly compli-
cated the problem. Our approximation approach uses a branch and bound strategy
that employs our fast dynamic programming algorithm for minimizing the expected
operational costs for a given production rate as a subroutine. Extensive numerical
experiments are conducted to demonstrate the efficiency of the branch and bound
procedure for solving large scale instances of the problem and for obtaining some
qualitative insights.

“Ever increasing quality is mandatory-not only for corporate profitability-but also for

corporate survival”

Inman, Blumenfeld, Huang and Li [10].

1 Introduction

A multistage manufacturing system integrates several successive manufacturing stages

(machines) to fabricate products. Producing high quality products at low cost is always
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one of the concerns, and thus production costs and rate as well as inspection costs should

receive high attention.

Inspection of a product is performed at various stages of its manufacture to assure,

or increase, the quality of the product before it is used in final applications. The general

inspection allocation problems in manufacturing systems contain several sub-problems

such as; optimal allocation of inspection stations within a manufacturing system, find-

ing optimal percentage of the total number of components to be inspected, finding the

best action among several options such as rework, repair or scarpping, finding the proper

inspection limits to determine the conforming (non-conforming) products, and others.

Many researches have studied various inspection effort allocation problems assuming cer-

tain conditions about the production system and a characteristics of the inspection pro-

cess. Models and optimization algorithms for the problem of installing inspection stations

are dated back to 1965, see Lindsay and Bishop [14]. A survey on the problem of optimal

allocation of inspection stations (referred to also as quality control stations (QCSs)) in

multistage systems, appears in Raz [20].

Strategic allocation of inspection stations in multistage production systems was studied

before under various assumptions; some of these assumptions are listed below. Some

studies focused on serial production processes (e.g Chakravarty and Shtub [4], Shiau [21],

and Bowling et al. [3]) while others on non-serial ones (e.g. Elmaghraby [7]). Some

papers assumed a constant known acceptance probability at each stage of the assembly

(e.g. [4], [7], Kogan and Raz [13]) while others studied nonconstant probabilities, such

as in a deteriorating process (e.g. Ben-Daya and A. Rahim [2]). Some of the models

assume versatile inspection stations, in particular the case where each station can detect

defects from all preceding operations (e.g. [14], Yum and McDowell [23], Bai and Yun [1])

while others assume that each inspection station can detect defects coming only from the

immediately preceding operation (e.g. Rebello et al. [19], Kakade et al. [11] ). In addition,

inspection can be an either/or decision (e.g. [4], [7]), or one with varied inspection limits

(e.g. Chen and Thornton [5], [21]). The applied inspection policy can be 100% inspection

(e.g. Bowling [3]) or a sampling inspection (e.g. [11]). Furthermore, the corrective action

used rework, scrap or others can be modeled. In some works such as [5], [21] and [11], the

corrective actions used are rework or scrap, while in others only the scarpping action is

allowed (e.g. implicitly in [13]). Also, some papers (e.g. [21]) assume some limitations and

constraints on the inspection availability, while in many other papers these limitations

are not taken into consideration. Some papers assume error-free inspection (e.g. [14],

[11]) while others assume Type I error, (conforming part is rejected) and Type II error

(non-conforming part is accepted) (e.g. [21], [2], [1]).

In our model we assume a serial production process with exponentially distributed

processing and inspecting times and Poisson arrival process of jobs into the system. Also,

at each installed inspection station an either/or decision is to be made, and that the scrap
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action is the only selected corrective action allowed. We further assume a 100% inspection

policy with error-free inspections (in high volume production, inspections are generally

performed by automated visual inspection systems which are highly reliable, consistent

and accurate, and thus such an assumption is reasonable) and that each inspection station

can detect defects from all preceding operations. In addition, a constant known acceptance

probability at each stage is assumed. Such a probability can be estimated using some

reliability engineering techniques. See, for example, Elsayed [8] for various methods for

estimating such probabilities.

As was previously observed in several studies, the allocation of inspection stations

along a production line (termed a QCS configuration) affects the throughput of the system.

This observation was pointed out in Rebello et al. [19] where two objective functions of

minimizing the cost and maximizing the yield, that is, the percentage of fault-free units

leaving the system, were combined in two different ways. First by maximizing the yield

under budget constraints and then by minimizing the ratio of the total cost to yield.

The first problem is NP-hard and the authors solved it using enumerative techniques,

while for the second problem they developed a polynomial time algorithm. Kakade et al.

[11] and [1], under different models than ours, assumed that if the inspection operation

is a bottleneck in the assembly line, than the inspection cost is due to the reduction of

the throughput rate of the line. In [11] the aim is to optimize the cycle time and used

simulated annealing procedure to solve the problem.

We observe that under our assumptions, if the first machine is a bottleneck, then the

installation of any QCS along the line has no effect on the throughput of conforming

parts, but it still may reduce the production cost. On the other hand, if the first machine

is not a bottleneck, then installing some QCSs along the line may increase the rate of the

throughput of conforming parts, and thus may increase the profit. This last observation

was utilized in the algorithms developed in this paper and the ones we have presented in

[18].

Furthermore, it turns out that the chosen QCS configuration substantially affects the

quantity of work in process (WIP) within the system and thus the actual costs. This

phenomenon was first pointed out in a descriptive manner by Drezner, Gurnani and

Akella [9] but, to the best of our knowledge, was never incorporated into an optimization

algorithm. Note that WIP is defined as the number of items already started their process

but not yet finished their last operation, i.e., raw material waiting for production in front

of the first workstation is not considered as WIP.

To demonstrate the effect of QCS configuration on WIP, consider for example a small

serial production line with 4 independent machines with identical production rate µ = 1

and an identical success probability of p = 0.95. That is, the overall success probability

of the system is 0.954 ≈ 0.815. If the desired production rate, of conforming products,

is 0.774 then the first machine should process new jobs in rate of λ = 0.95 ≈ 0.774
0.815

. We
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assume that the arrival process of raw material to the first machine is a Poisson process.

That is, in a steady state, the expected length of time a product is within the system is

1 + 3× 1

µ(1− ρ)
= 1 + 3× 1

1− 0.95
= 61

and so by Little’s law the expected WIP is L = W × λ = 61 × 0.95 = 57.95. Now, the

installation of a QCS between the first and the second machine will reduce the arrival rate

to the remaining machines on the line to 0.95×0.95 = .9025. Suppose the inspection rate

of the installed QCS is 2, then the expected time an item stays in the system is reduced

to

1 +
1

2(1− 0.95
2

)
+ 3× 1

1− 0.9025
≈ 32.82.

Thus, the expected WIP in the system is reduced by some 46% to 32.82× 0.95 = 31.18.

Another benefit gained by removing non-conforming items from the line is saving of

processing costs. On the other hand, clearly, the inspection device incurs it own costs and

so this trade off should be considered.

In this paper we define and solve a QCS configuration model of a serial production

line where QCSs are to be installed along the line, and present a method to analyze and

optimize the performance of such a system. Two optimization problems are considered:

minimization of the expected operational cost under a given production rate and max-

imization of the expected profit where the QCS configuration and the production rate

are to be determined concurrently. The novel feature of this study is the introduction of

holding cost into the optimization problem. We note that this substantially increases the

difficulty of the problem.

In [18] Penn and Raviv have presented an O(n4) algorithm, where n stands for the

number of machines along the line, to maximize the profit, in a steady state, of a pro-

duction system with inspection stations. The algorithm in [18] works for any stationary

stochastic arrival process, any processing and inspection time distributions and under the

assumption that no holding costs incurred by work in process. The basic idea behind the

polynomial algorithm in [18] is the observation that the size of the set of possible values

of optimal production rates is relative small and an efficient method to identify this set.

Unfortunately, the above idea fails to hold if holding costs are incorporated into the sys-

tem, and thus different techniques had to be utilized for solving the more complicated

problem discussed in this paper.

The cost minimization problem is solved using a simple fast polynomial time dynamic

programming algorithm assuming exponentially distributed processing times and Poisson

arrival process of jobs into the system. We note that the assumption of the Poisson and

exponential distributions are commonly used in Queuing Theory (e.g., [12]) and can also

be served as good approximations for other processing times and arrival process distri-

butions in serial production lines (e.g. [16], [22]). The profit maximization problem is
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approximated under the same assumptions using a branch and bound strategy that em-

ploys the dynamic programming algorithm as a subroutine. The main contributions of

this paper are twofold: Incorporation of holding costs in the objective function of the

minimization and maximization problems and the efficient algorithms developed for solv-

ing the above problems; especially the branch and bound method for the maximization

problem. Extensive computational experiments were conducted to demonstrate the ef-

ficiency of the proposed procedures. These experiments also show the advantage of the

above method as a good heuristic for non-Poisson arrival processes and, in particular, for

the deterministic arrival process (constant inter-arrival times), which is a more applicable

dispatching policy for serial production lines. Also, additional computational experiments

were conducted for a qualitative analysis of the system. These experiments show the effect

of the production and inspection rates on the number and locations of the installed QCSs

as well as pointing out on some interesting manegerial insights.

The paper is organized as follows: In Section 2 the cost minimization problem is de-

fined and a method for calculating the operational cost of a system with a given QCS

configuration is presented. Section 3 presents a simple polynomial time dynamic pro-

gramming algorithm to obtain a minimal cost QCS configuration for a given pre-specified

production rate under the assumption of Poisson arrival process of jobs into the system

and exponential distribution of the processing times. Section 4 is devoted to the main

contribution of the paper, the definition of the profit maximization problem and the de-

scription of the developed branch and bound approximation strategy for solving it. In

Section 5 we present our numerical experiments that show the practical efficiency of our

algorithms, demonstrate their applicability to the case of constant inter-arrival times and

describe some qualitative insights.

2 The Model

In this section we start with the definition of a QCS system and then, given such a system,

we find out some simple conditions, in terms of the arrival rates, under which the QCS

system is stable, as well as determine the operational cost of the system.

2.1 System Description

Our assumptions and notations are summarized below.

1. A stream of identical jobs arrives at the first machine, according to a stationary

stochastic Poisson process.

2. Each machine starts processing its next operation as soon as it turns ready and a

job is available in its feeding buffer.
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3. Each machine has its own exponential distributed processing times of the jobs on

that machine, and has its own operational cost for processing each job.

4. The probability of producing a non-conforming product on machine i, given it arrives

conforming to that machine, is known and constant.

5. The success and the failure events on each machine are independent.

6. A QCS can be assigned immediately after each machine to perform 100% inspection.

7. For each QCS, the inspection operation times are exponential i.i.d random variables

and each job requires the same inspection cost on a given QCS.

8. A QCS after any machine can detect any of the previously caused defects, if such

exist.

9. Each inspection process is error-free.

10. A non-conforming product will be discarded if realized as such.

The following types of cost are taken into consideration:

1. Variable cost per each operation of the machines and the installed QCSs.

2. Capital cost of the installed QCSs1.

3. Holding cost of the work in process.

4. Penalty cost of delivered non-conforming products.

2.2 Notations

N The number of machines in the serial production line.

Mi The ith machine in the production line.

QCi The Quality Control Station (QCS) that is installed immediately after Mi.

xi Mean processing time of machine Mi.

x′i Mean inspection tine of QCi.

pi Probability of a conforming job entering machine Mi to remain conforming after leaving

the machine.

1The capital cost of the machines are considered as sunk costs and thus are not incorporated in our
optimization problem.
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qij Probability that a conforming job leaving machine i remains conforming after leaving

machine j. We assume the qij’s are known for any pair of indices i and j. By con-

vention qii = 1. Clearly, if we assume independence of the pis then qij ≡
∏j

l=i+1 pl.

q0i Unconditional probability that a conforming job remains conforming by the time it

leaves machine i.

ci Cost of performing an operation on machine Mi (variable cost).

c′i Cost of performing an operation on QCi, if such installed (variable cost).

f ′i Fixed (capital) cost per unit of time of operating QCi.

hi Holding cost per unit of time an item waiting to be processed on Mi.

h′i Holding cost per unit of time an item waiting to be inspected by QCi.

rB Penalty cost of non-conforming product delivered from the system.

r(x) Revenue function, the total revenue per unit of time for production rate x.

Y - A QCS configuration. Sometimes refereed to as a characteristic vector, with Yi = 1

(resp., Yi = 0) indicating that QCi is (resp., is not) installed. In other cases, we

refer to it as a set of locations Y ⊆ {1, . . . , N} with i ∈ Y implying that QCi is

installed.

Li(Y ) - The location of the last installed QCS before machine Mi in configuration Y , or

0 if there is no such QCS. (Li(Y ) ≡ max{j ∈ Y ∪ {0}|j < i}).

The tuple (p,x,x′, c, c′, f ′,h,h′, rB) with an arrival rate of value a is referred to as a

QCS(a) cost minimization problem. A system defined by a QCS(a) problem and a given

configuration Y is denoted by (QCS(a), Y ). Given a (QCS(a), Y ) system, Ai(Y, a) stands

for the arrival rate of the jobs into machine i.

2.3 Preliminaries

A (QCS(a),Y) system is said to be stable if the expected amount of work in process in

each of the system’s buffers converges to some constant as t, the time the system operates,

goes to infinity. The following two conditions for stability can be easily derived.

Observation 2.1 Let (QCS(a),Y) be a given system and assume the following inequali-

ties hold

a · q0,Li(Y ) <
1

xi

∀i = 1, ..., N (1)
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and

Yi · a · q0,Li(Y ) <
1

x′i
∀i = 1, ..., N, (2)

then the system is stable and for each i, Ai(Y, a) = a · q0,Li(Y ).

Observation 2.2 Given a (QCS(a), Y ), the system is stable if and only if

a < min

{
min

i

1

xi · q0,Li(Y )

, min
i:Yi=1

1

x′i · q0,Li(Y )

}
.

Note that Observations 2.1 and 2.2 hold for any stationary arrival process. However,

under exponential processing and inspection times and Poisson arrival process our system

can be modelled as a tandem Jackson Network, implying the arrival process at any station

is a Poisson process. Thus, the queue length process in front of any station is as in an

M/M/1 system with arrival rate a · q0,Li(Y ) and service rate 1
xi

. The expected waiting

time (including the service time) is,

1
1
xi
− a · q0,Li(Y )

.

Hence, the total expected cost per item handled by a machine for a given QCS configu-

ration Y and arrival rate a is explicitly given by,

Ci(Y, a) = ci +
hi

1
xi
− a · q0,Li(Y )

. (3)

Similarly, the expected cost incurred by the QCi is

C ′i(Y, a) = Yi

(
c′i +

h′i
1
x′i
− a · q0,Li(Y )

)
. (4)

Hence, the expected operating cost of the system per time unit is given by

C(Y, a) ≡ a ·∑N
i=1 q0,Li(Y ) · [Ci(Y, a) + C ′i(Y, a)] +

∑N
i=1 Yif

′
i

+(1− YN) · a · q0,LY (N) · (1− qLY (N),N) · rB.
(5)

Note that Ci(Y, a) is defined only for arrival rates a < (xi · q0,Li(Y ))
−1 and thus the

queue in front of machine i is finite. Similarly, if Yi = 1, then a < (x′i · q0,Li(Y ))
−1 is the

domain of C ′i(Y, a), otherwise the domain is R+. Clearly, the domain of C(Y, a) is the

intersection of these domains. Note that if no confusion arises, we assume that the above

three functions are defined over R+ and obtain the value ∞ outside their actual domains.
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3 Optimal QCS Configuration - The Known Arrival

Rate Case

In this section we turn to solve the combinatorial optimization problem of determining

an optimal QCS configuration that minimizes the cost function over all 2N possible con-

figurations. Not surprisingly, the dynamic programming approach is suitable for solving

the minimization problem and thus it was chosen. The dynamic programming algorithm

proposed solves the problem in time complexity of O(N2) and is used as a subroutine

in our main algorithm for solving the maximization problem. The optimal value of the

minimization problem is denoted by

C∗(a) = min
Y ∈{0,1}N

C(Y, a)

and an optimal QCS configuration that materializes this cost is denoted by

Y ∗(a) = argminY ∈{0,1}N C(Y, a).

If there exists more than one QCS configuration that minimizes the expected cost, then

Y ∗(a) represents any arbitrarily chosen optimal configuration. The algorithm presented

below follows similar lines of some previously presented algorithms such as Lindsay and

Bishop (see [14]), but in addition accommodates arrival rates and WIP costs.

Algorithm 3.1 The QCS(a) Dynamic Programming Algorithm

Input: A QCS(a) problem defined by (p,x,x′, c, c′, f ′,h,h′, rB) and an arrival rate a.
The recursion function gi(Li; Yi) denotes the total cost that incurred by the tail of the
system that begins at machine i, assuming QCLi

is the last installed control station before
machine i, and given the existence (Yi = 1) or absence (Yi = 0) of QCi. Here, Li is a
state variable and Yi is a decision variable. For all i = 1, . . . , N − 1, the function gi is
constructed by the following recursive relation:

gi(Li; Yi) = a · q0,Li ·
[
ci +

hi
1
xi
− a · q0,Li

+

(
c′i +

h′i
1

x′N
− a · q0,Li

)
· Yi

]
+ f ′iYi + g∗i+1 (Li+1(Li, Yi)) (6)

for a · q0,Li
∈ [0, min{ 1

xi
, 1

x′i
+ (1 − Yi) · ∞}), and gi(Li; Yi) = ∞ otherwise. We use the

following transition function:

Li+1(Li, Yi) =

{
Li Yi = 0

i Yi = 1.
(7)

The initial condition for gN is

gN(LN ; YN) = a · q0,LN
·
[
ci + hN

1
xN

−a·q0,LN

+

(
c′N +

h′N
1

x′
N
−a·q0,LN

)
· YN

]
+

f ′NYN + (1− YN) · a · q0,LN
· (1− qLN ,N) · rB

(8)

for a · q0,LN
∈ [0, min{ 1

xN
, 1

x′N
+ (1− YN) · ∞}) and gN(LN ; YN) = ∞ otherwise.
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The function g∗i is constructed by

g∗i (Li) = min
Yi

gi(Li; Yi). (9)

If, at any stage, g∗i (Li) = ∞ for all Li = 0, . . . , i − 1, then the arrival rate a is not

feasible for the problem and the algorithm terminates. The optimal decision at each step

i (whether to install a QCS at position i or not) is determined by

Y ∗
i (Li) = argminYi

gi(Li; Yi). (10)

¥

We note that the QCS(a) problem can also be formulated as the shortest path problem

on a directed graph, with a complete underlying graph, on N + 2 nodes denoted by

{0, ..., N + 1}. The cost cij of an edge (i, j), i < j, {i, j} ⊂ {1, ..., N}, is the total cost

incurred by processing and by the inventory on all the machines indexed by i+1, ..., j and

QCj; assuming QCi is the last QCS before QCj. Similarly, c0j denotes the costs incurred

by machines M1, ..., Mj and by QCj, assuming QCj is the first installed QCS. In addition,

ci,N+1 denotes the total cost, including penalty for non-conforming product, incurred by

machines Mi+1, ...,MN , assuming QCi is the last QCS on the line. We observe that a

shortest path from node 0 to node N + 1 induces an optimal QCS configuration. Based

on the above, we conclude that Algorithm 3.1 is merely an implementation of Dijkstra’s

Algorithm simultaneously with calculation of the edge costs.

Proposition 3.1 The time and the space complexity of Algorithm 3.1 is O(N2).

Proof. Note that calculating all edge costs can be done in O(N2) time and space. This

coupled with the analogy between the QCS(a) problem and the shortest path problem

as well as between Algorithm 3.1 and Dijkstra Algorithm [6], imply the correctness of the

proposition. ¥

4 The Profit Maximization Problem

In this section we extend the problem to capture the case when the arrival rate is a

decision variable rather than part of the input. Thus, our aim is to optimize the QCS

configuration and the production rate simultaneously. The proposed branch and bound

strategist partitions the domain of the arrival rate in search for an optimal arrival rate

and utilizes the QCS(a) Dynamic Programming Algorithm as a subroutine.
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4.1 Problem Definition

We consider a QCS problem defined by (p,x,x′, c, c′, f ′,h,h′, rB) coupled with a revenue

function r(x). The function r(x) describes the expected revenue per time unit as a function

of the departure rate of the conforming products from the last machine. If the firm plays

in a competitive market, then this function is linear and homogeneous as the production

rate of the firm admits no influence on the market price. For the discussion below we use

a weaker assumption that the revenue function is K-Lipschitz continuous over the relevant

domain. That is, it is continuous and differentiable almost every where with its derivative

bounded above by some finite constant K. This assumption is not very restrictive since

in practice the average revenue is hardly affected by small changes in the supply.

Our extended profit maximization problem, denoted by QCS, is to determine the

arrival rate and the QCS configuration simultaneously in order to maximize the expected

profit per time unit from the system in steady state. For a given QCS configuration Y

and an arrival rate a, the total profit per time unit is,

P (Y, a) = r(q0,N · a)− C(Y, a) (11)

Now, the optimal profit for a given arrival rate a is just

P ∗(a) = r(q0,N · a)− C∗(a)

and hence can be easily calculated using Algorithm 3.1. Therefore, our extended para-

metric problem can be formulated as

max
a

P ∗(a) (12)

and in this form, it is reduced to an optimization problem in a single continuous variable.

Clearly, (12) always admits a finite optimal solution since it is always feasible for a = 0

and a is bounded above for any possible QCS configuration, see Observation 2.2.

4.2 Some Properties of the Objective Function

Note that in general, P ∗(a) is not concave or unimodal, hence standard line search tech-

niques will not solve (12). This statement holds even for linear r(a). In the sequel we

explore some useful properties of C∗(a) and P ∗(a) that form the basis for our approxima-

tion method. The proofs of Lemmas 4.1 and 4.2 are rather technical and lengthy, thus

we have chosen to present them in the Appendix.

Lemma 4.1 The function C∗(a) is continuous, piecewise convex and piecewise differen-

tiable with respect to a.
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Lemma 4.2 For any pair of points a1 ≥ a0 in the domain of C∗(a), if C∗(a) is differen-

tiable at a1 then its derivative is bounded below by

∂C∗(a)

∂a
(a1) ≥

N∑
i=1





q0,i−1

(
ci +

hi

1
xi
− a0 · q0,i−1

)
+

a0 · hi · q2
0,i−1(

1
xi
− a0 · q0,i−1

)2




≡ ζa0 .

Clearly, the slope of the function P ∗(a1) for any point a1 > a0 is bounded above by the

Lipschitz constant K minus the lower bound on the slope of C∗(a0) obtained by Lemma

4.2. Thus we have the following corollary which is essential for our branch and bound

procedure.

Corollary 4.3 Let γa0 = K − ζa0. For any pair of feasible arrival rates a0 and a1 such

that a0 < a1,

P ∗(a1) ≤ P ∗(a0) + (a1 − a0) · γa0 .

4.3 A Branch and Bound Algorithm for the Profit Maximization

Problem

Based on Corollary 4.3 and on Algorithm 3.1 we present below Algorithm 4.1 which is a

branch and bound approximation procedure for solving the profit maximization problem.

Let A > 0 and R ≥ 0 be the desired absolute and relative optimality errors, respectively.

That is, if the value of the optimal solution is OPT , then our algorithm terminates with

a solution which is at least min {OPT · (1−R), OPT −A}.
The algorithm maintains a list of active segments which are continuous subsets of the

set of feasible rates. For each segment in the list we store the start point (a0), the end

point (a1), the optimal profit at a0 (P ∗(a0)) and an upper bound on the expected profit

from the system for any arrival rate a ∈ [a0, a1). The list is ordered by the upper bounds.

We start with a single segment that contains all feasible arrival rates. In any iteration,

the algorithm removes a segment from the list. The optimal configuration is calculated

for the middle point of the segment and the segment is divided into two segments of equal

length. If the profit at the middle point is higher than the best known solution, then it

is stored as the current best known solution. Next, tighter upper bounds are calculated

on the value of the optimal solution within each of the two newly created segments. The

segments are returned to the list if their upper bounds are sufficiently larger than the best

known solution.

Algorithm 4.1 The QCS Branch and Bound Procedure

Input: a QCS problem (p,x,x′, c, c′, f ′,h,h′, rB, r(x)), optimality errors A and R.
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Initialization: Start with a list of active segments L that contains a single segment[
0, mini

{
q0,i−1

xi

})
. Set current best known solution a∗ = 0 (with value P ∗(a∗) = 0)

and set the upper bound relative to this segment to be γ0

x1
.

Step1: Remove from L a segment [a0, a1) of maximum upper bound. Let a′0 = a0+a1

2
.

Step2a: Construct a new segment [a0, a
′
0). A lower bound on the maximum profit within

this segment is given by P ∗(a0). Use Corollary 4.3 to calculate the upper bound

P ∗(a0)+ γa0(a
′
0− a0) that associates with the segment. If this upper bound exceeds

min{P ∗(a∗) · (1 +R), P ∗(a∗) +A} add the new segment [a0, a
′
0) to L.

Step2b: Construct a new segment [a′0, a1). Calculate P ∗(a′0) and its corresponding QCS

configuration using Algorithm 3.1. P ∗(a′0) is a lower bound on the maximum profit

within the segment. If P ∗(a′0) > P ∗(a∗) then store it as the new best known solution,

i.e., set a∗ = a′0. Use Corollary 4.3 to calculate the upper bound P ∗(a′0)+γa′0(a1−a′0)
that associates with the segment. If this upper bound exceeds min{P ∗(a∗) · (1 +

R), P ∗(a∗) +A} add the new segment [a′0, a1) to L.

Step3: If L is empty then stop and return the current best known solution. Otherwise

goto step 1.

Theorem 4.4 Algorithm 4.1 terminates in a finite number of iterations and achieves an

approximate solution of value min {OPT −A, OPT · (1−R)}.

Proof. Observe that at any step of the algorithm, a segment is removed from the list and

two, one or zero new segments of half length of the removed one, are added to the list.

The length of any segment in the list is bounded below by A
2γ0

and hence at some point the

list becomes empty and the algorithm stops. Clearly from the algorithm description the

value of the solution yielded by the algorithm is at least min {OPT −A, OPT · (1−R)}.
¥

Remark 4.5 If the absolute error is set to A = 0, then Algorithm 4.1 still converges

to the optimal solution but the convergence process may be infinite, regardless of the

magnitude of R. However, this has no practical implication since there is always some

absolute error imposed by the floating point accuracy of the computer.

Remark 4.6 Note that although throughout this paper we assumed the Poison arrival

process, the developed methods produce good approximate solution (in the heuristic sense)

to other arrival processes. This phenomenon is indicated in the literature and was also
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observed by our numerical experiments as described in the next section. It is widely

believed that in a tandem of N stations, if the arrival process is stationary and ergodic

with a rate of α and the system is stable, then the departure process from the nth station

converges to a Poisson process with a rate of α as n → ∞. This conjecture is known

as Reiman and Simon conjecture and was partially proved by Mountford and Prabhakar

[16] for the case of identical stations. Furthermore, a simulation study conducted by

Suresh and Whitt [22] indicates that the convergence rate, in terms of the number of

machines in the tandem, is fairly high if the arrival process admits low variability and in

particular when the arrival process is deterministic (e.g., the inter-arrival times between

any successive arrivals are constant).

5 Computational Results

Our computational study is divided into two parts. The first part is devoted to the compu-

tational analysis of our algorithms, while the second part concentrates on the qualitative

insights of the obtained solutions.

The first part of our study consists of three sets of experiments described in the

subsections below. In 5.1 we test the applicability of Algorithms 3.1 and 4.1 for very large

instances of the profit maximization problem. We solved instances with 1000 machines

in a very short time. In 5.2 We show that the optimal QCS configuration for a Poisson

arrival process remains nearly optimal when the Poisson arrival process is replaced by a

deterministic one of the same rate. We compare the results obtained from Algorithm 3.1

with the simulation results of all 2N possible QCS configurations. For obvious reasons,

this experiment is restricted to short production lines. We have tested it on eight machines

lines. The created test problem instances differed by the following three criteria:

1. Success probabilities: Groups denoted by L possess relatively low success proba-

bilities while H denotes those possess high ones. The success probabilities of the ‘H’

instances were generated such that q0,N =
∏N

i=1 pi ≈ 0.8 and for the ‘L’ instances it

is q0,N ≈ 0.4.

2. Tendency of the processing rates along the line: For instances denoted by R

the expected processing times were sampled from a common distribution (i.i.d) and

for those denoted by I, the expected processing times were generated in a way that

insures strictly increasing processing times in i, the index of the station.

3. Tendency of the holding costs along the line: In problems denoted by R,

the holding costs h and h′ were taken from a common distribution (i.i.d) for all

stations and for those denoted by I (resp., D) the holding costs were generated to

be monotonously increasing (resp., decreasing) in i, the machine index.
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There are 12 combinations of these criteria. A problem instance is denoted by three

letters and the number of machines. For example, a problem denoted by HRD8 is one

with High success probabilities, arbitrary Random processing times, Decreasing holding

costs and 8 machines. These 12 combinations represent variety of systems setups. Note

that we did not include in our data set problems with decreasing processing times. Such

systems are not likely to be used in real life and in many cases they are easier to analyze

because the configuration of QCSs located downstream the bottleneck station admits no

effect on line throughput, as long as the inspection time is shorter than processing time.

In 5.3 we present the second part of our computational analysis. Here we study

the nature of optimal QCS in two types of regular systems and show how the optimal

configurations are affected by diverse production rates.

5.1 The Efficiency of the Algorithms

In order to check the applicability of Algorithm 4.1 (the Profit Maximization Algorithm),

we defined two revenue functions r(x) = α · x and r(x) = β
√

x. The constants α and β

were randomly selected in a manner that assures the existence of a profitable solution;

this, in order to avoid trivial instances. We coupled this two revenue functions with the

12 above combinations which work out for 24 types of problems. We randomly generated

1200 instances of the problem with 1000 machines each, 50 instances for each problem

type.

Our algorithm was applied for these problems; The relative optimality error was set to

0.001 (0.1%) and the absolute optimality gap was set to 0 (which practically means that

the absolute error is set to the numerical accuracy of the computer). The running times

in seconds and the number of iterations (calls to Algorithm 3.1) were collected. Statistics

of this experiment are presented in Table 1.

The algorithm was implemented in Microsoft Visual C++ with LEDA (see [15]) on

an Intel Pentium 4, 2Ghz CPU with 512Mb RAM. The source code and data set are

available from our site http://www.talraviv.net/ under Publications.

From Table 1, it is apparent that Algorithms 3.1 and 4.1 can be employed to solve

efficiently the problems presented in the paper under diverse sets of conditions and for any

reasonable size. In particular, we believe that 1000 machines is a reasonable upper bound

on the size of serial production lines encountered in real life and the relative optimality

guarantee of 0.1% is in most cases more accurate than the problem parameters. Note that

Algorithm 3.1 is a subroutine called numerous times in the solution process of Algorithm

4.1. Thus, the problem of determining an optimal QCS configuration for a given arrival

rate in a thousand machines line is solved within a fraction of a second.
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r(x) = C · x r(x) = C ·
√

(x)

Model Average Worst Average # Average Worst Average #

time time iterations time time iterations

LII1000 0.997 1.673 8.54 3.667 4.567 30.46

LID1000 1.076 1.783 8.70 3.896 4.596 31.14

LIR1000 1.024 1.562 8.44 3.767 4.507 30.52

LRI1000 2.004 2.604 12.00 4.542 6.069 32.60

LRD1000 1.937 2.774 11.44 4.562 5.498 33.06

LRR1000 1.986 2.603 11.82 4.542 5.758 32.52

HII1000 1.716 2.413 11.94 4.640 5.438 35.54

HID1000 1.711 2.494 12.26 4.717 5.978 36.64

HIR1000 1.751 2.473 12.10 4.740 5.899 36.10

HRI1000 1.973 3.265 12.46 4.561 5.508 33.86

HRD1000 1.913 2.864 12.50 4.581 5.739 34.36

HRR1000 1.928 2.834 12.42 4.489 5.398 33.62

Table 1: The average and worst case running times of Algorithm 4.1 in seconds and the average
number of calls to Algorithm 3.1 are presented for the two different revenue functions.

5.2 Deterministic Arrival Process

We believe that optimal QCS configurations for the Poisson arrival process frequently

remain optimal or near optimal for non-Poison arrival processes and in particular for the

deterministic arrival process. In this section we supply further numerical support for this

belief.

Twelve systems of eight machines each based on our 12 categories described at the

beginning of this section, were constructed. Each cost minimization problem was solved,

using Algorithm 3.1 for three different arrival rates. The arrival rates were selected in

order to cover diverse sets of conditions, according to the following method. Observation

2.2 was used to obtain λmax, an upper bound on the feasible arrival rates assuming all

eight QCSs are installed. The following arrival rates λlow = 0.5λmax, λmed = 0.8λmax and

λhigh = 0.95λmax were considered.

The procedure recently proposed by Nelson, Swann, Goldsman and Song [17] (NSGS

procedure) was used to obtain a near “optimal” configuration for the problem with deter-

ministic arrival process. This procedure finds, with a pre-specified probability (1− α), a

solution which is optimal or within a pre-specified Indifference Zone from the optimum.

We applied the above procedure with an indifference zone of 2% (of the optimal cost

obtained by our algorithm) and α = 0.05. It should be noted that NSGS procedure is

practical only for very small instances of our problem since the procedure repeatedly runs
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numerous simulation sessions for each of the exponentially many possible configurations.

In our case, each of the eight machines problem with the above confidence level and

indifferent zone, took several minutes to solve.

For the “optimal” solutions obtained by Algorithm 3.1 and by NSGS procedure, fur-

ther simulations under the deterministic arrival process were conducted, until a relative

confidence interval of 0.1% could be obtained.

Table 2 compares the solutions obtained by Algorithm 3.1 with those obtained by

the NSGS procedure when both procedures were used for the problem with deterministic

arrival process. The values in the “ratio” columns were calculated as follow,

100×
(

Cost of the best solution obtained by NSGS procedure

Cost of the optimal solution obtained by Algorithm 3.1
− 1

)
.

Prob- Low Rate (0.5λmax) Medium Rate (0.8λmax) High Rate (0.95λmax)

lem Ratio Optimal Configuration Ratio Optimal Configuration Ratio Optimal Configuration

DP 3.1 NSGS DP 3.1 NSGS DP 3.1 NSGS

LII8 - 00010001 - 01010101 1.7% 11111101 11110101

LID8 - 00100001 0.4% 01010001 00110001 - 11111001

LIR8 -1.1% 00100001 00100011 - 00100101 - 10101011

LRI8 -0.0% 01000001 00100001 -0.4% 01000001 00100001 -0.0% 00100001 00010001

LRD8 -1.2% 00100001 01000001 -1.3% 00100001 01000001 -0.1% 00010001 01010001

LRR8 - 01000001 - 01000001 - 01000001

HII8 - 00000001 -0.2% 00010001 01000011 - 01010010

HID8 - 00000000 -1.2% 00100000 0000000 - 00100100

HIR8 - 00000010 - 00000010 - 00100010

HRI8 -1.1% 00000001 00000010 - 00000010 - 00000010

HRD8 - 00000010 - 00000010 - 00000010

HRR8 -1.6% 00000010 00000001 -2.4% 00000010 00000001 -0.3% 00000010 00000011

Table 2: A comparison between the profit and the QCS configurations for the eight machines system
obtained by Algorithm 3.1 and by NSGS procedure.

From Table 2 it is apparent that for our 36 test problems, Algorithm 3.1 returns

solutions which are either optimal or very close to optimal. The differences between the

solutions obtained by both methods can be partly explained by the estimation error.

Recall that the total costs of a given system under Poisson arrival process and under

deterministic one differ only in the holding costs. Thus, for low holding costs it is not

surprising that the optimal solutions are similar for both cases. In order to show that the

above phenomenon holds also for relatively high holding costs we examined the proportion

of holding costs relative to the total expenses. We note that for the instances presented

in Table 2 holding costs were a substantial part of the total costs of the optimal solution

(26.1% of the total expense on the average with a range of 10.2% to 48.2%).
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5.3 Qualitative Insights: Typical QCS Configurations

We turn now to study the effect of production (inspection) rates on the QCS configura-

tions. The executed tests provide us with some insights on the nature of optimal QCS

configurations. We consider two systems, each of 100 machines with similar parame-

ters expect for their processing and inspection times. In both systems, and for all the

machines, the success probabilities were set to pi = 0.99; the variable processing and

inspection costs per unit were set to ci = c′i = 1; the fixed cost of installing a QCS was set

to f ′i = 0; the holding cost per unit of time of an item in front of each of the stations was

set to hi = h′i = 0.1; the penalty for delivering a non-conforming item was set to rB = 10.

It should be pointed out that in this experiment we are only interested in an optimal

QCS configuration for a give production rate. As a result, the price of a conforming

product, rG, has no effect. In System 1, the processing and inspection times are all fixed

xi = x′i = 1 while in System 2 we set the processing times to increase in a rate of 1% per

machine. That is xi = xi−1

0.99
. In order to make the two systems comparable we normalized

the processing times of all machines such that the mean processing time is 1. Also, for

each installed QCS, we set its inspection time to equal the processing time of its previous

machine on the line. That is, x′i = xi. Note that, for System 2, maximum production

rate can only be achieved by installing a QCS between each pair of machines. On the

other hand, in System 1, the bottleneck station is the first machine. Thus, installation

of QCS has no effect on the maximum potential production rate of the system. Figures

1 and 2 illustrate optimal QCS configurations in these two systems, each, for 99 possible

production rates of 1% to 99% of the maximum possible capacity.

As one would expect, in both systems the number of installed QCSs is non-decreasing

with the production rate; optimal solutions seem to be robust to small changes in the

rates; optimal solutions are somewhat symmetric in the sense that in each solution, the

distances between any pair of consecutive QCSs are approximately the same. System

2 seems to be of a more symmetric pattern. This symmetry is probably due to the

symmetric patterns of the production and inspection rates in the systems we studied.

Albeit the similarity in the parameters, optimal solutions of System 2 always take more

QCSs and this difference increases as the production rate increases. This observation

can be explained by the fact that in System 2, if it is possible to remove non-conforming

items from the system during the production process, it is reasonable to have the first

machines working faster than those down the line. Hence, installation of QCSs helps to

reduce costs not only by reducing production costs but also by releasing bottlenecks and

reducing holding costs of work in process.

Two conflicting factors affect the decision to install a QCS toward the end of the

line. Since the penalty cost imposed on non-conforming items is affected only by the last

installed QCS, the values of rB and the failure probabilities affect the decision to install a

QCS toward the end of the line. Indeed, if there is no such penalty, that is rB = 0, then
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Figure 1: Optimal QCS configurations of System 1 - constant production (inspection)

rate. Each row represents an optimal configuration at a given relative rate (production

rate/maximum capacity).

optimal solutions tend to be more symmetric as illustrated in Figure 3. However, locating

a QCS toward the end of the line has the least effect on the inventory cost and thus makes

these locations less attractive for installation of QCSs if holding costs are relatively high.

One should observe that deriving a rule of the thumb for obtaining optimal QCS con-

figurations is hard to achieve. This is because optimal configurations, in real production

lines, are very sensitive to many parameters that may vary significantly from station to

station along the line. However, an important observation from our experiment above is

that optimal QCS configurations are relatively robust to moderate changes in the pro-

duction rate, especially if the system is not working near its maximum possible capacity.

Clearly, such changes are frequently required due to changes in the market.
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Figure 2: Optimal QCS configurations of System 2 - decreasing production (inspection)

rate. Each row represents the optimal configuration at a given relative rate (production

rate/maximum capacity).

6 Discussion

In this paper we presented a dynamic programming algorithm and a branch and bound

strategy to solve the problem of determining an optimal QCS configuration along a serial

production line. Two versions of this problem were considered: minimization of the cost

per time unit under a given production rate and maximization of the profit where the

QCS configuration and the production rate are to be selected simultaneously. As was

pointed out throughout the paper, the latter problem is much harder than the former

one.

We point out that the model discussed in this paper, as oppose to previous studies in

the literature, captures the effect of the inspection process on the line throughput and on

the level of work in process. Clearly there is a tradeoff related to installation of QCSs. On

the pros side, QCSs save resources otherwise spent on non-conforming products, allow to

increase the line throughput by reducing the load on the bottleneck stations and reduce

the work in process on the stations that follow them. On the cons side, QCSs incur their
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Figure 3: Optimal QCS configurations - decreasing production (inspection) rate with no

penalty. Each row represents an optimal configuration at a given relative rate (production

rate/maximum capacity).

own costs, and create new queues in the system that might increase WIP and flow time.

Throughout the analytical part of the paper we assumed that the arrival process

of jobs into the system is Poisson. This assumption is not suitable for most real life

production environments where the jobs are dispatched into the system by a decision of the

system operator. We used numerical experiments to demonstrate that the Poisson arrival

assumption leads to near optimal solutions also for deterministic arrival processes. This

is true at least for small instances of the problem, for which we were able to estimate the

optimal solutions by an enumerative method. However, we expect the method to be even

more accurate for larger instances since the arrival process into machine i stochastically

approaches Poisson process as i →∞. See the discussion on Reiman and Simon conjecture

in Remark 4.6.

Note that although our aim in this study was to optimize the steady state performances

of the systems, we believe that the method is also well suited for high multiplicity problems

where a large but finite number of identical or similar products are to be produced, and
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the goal is to minimize the total cost or maximize the total profit.

We propose further research to focus on the following directions: (1) To perform

some sensitivity analysis to study the affect of different failure probabilities, arrival rates,

processing times etc.. (2). To consider some dependence in the operations’ failures prob-

abilities. For example, to allow the failure probabilities to depend on the state of the

machine. (3). The policy of 100% inspection in each installed QCS may be sub-optimal

even under the assumption of independent failures on any machine. In particular, for

slow QCSs, it might be better to inspect subsets of the jobs, so part of the benefit from

inspecting is gained without creating a new bottleneck in the system. In general, the de-

cision whether to check a job or not should be made on-line, based on the state along the

line. (4) To allow Type I and Type II inspections errors in our model. (5) To model the

case where the inspection operation itself may damage the product with some probability.

The production model presented in this paper can be further extended to capture

a variety of manufacturing environments such as allowing repairs, reworks and machine

breakdowns. In addition, other manufacturing environments such as job shop, assembly

lines and multi-stage shop should be considered. Also, the ideas presented here can be

adopted to some problems in other areas, such as determining optimal integrity check

points in communication networks or during long service processes.
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Appendix

Proof of Lemma 4.1. Recall that the function C∗(a) is obtained as a minimization over

all possible configurations of C(Y, a). Thus, it is suffice to show that C(Y, a) is convex,

continuous and differentiable with respect to a. Let us write this function explicitly

C(Y, a) ≡ a ·∑N
i=1 q0,Li(Y ) · [Ci(Y, a) + C ′i(Y, a)] +

∑N
i=1 Yif

′
i

+(1− YN) · a · q0,LY (N) · (1− qLY (N),N) · rB.

Thus, C(Y, a) is a sum of linear functions and the functions

Hi(Y, a) =
hi · q0,Li(Y ) · a
q0,Li(Y ) · a− 1

xi

and H′
i(Y, a) =

h′i · q0,Li(Y ) · a
q0,Li(Y ) · a− 1

x′i

.

Deriving Hi(Y, a) twice we obtain,

∂2Hi(Y, a)

∂a
=

2 q0,Li(Y ) hi(
a q0,Li(Y ) − 1

xi

)2 −
2 a q0,Li(Y ) hi(

a q0,Li(Y ) − 1
xi

)3 = − 2 q0,Li(Y ) hi x
2
i(

a xi q0,Li(Y ) − 1
)3 .

Since we are interested in stable systems, it follows from Observation 2.2 that the

relevant arrival rates are those for which a · q0,Li(Y ) < 1
xi

and a · q0,Li(Y ) < 1
x′i

. Thus, it is

easy to see that the second derivative is positive for all a in the relevant domain and the

convexity of H is established. Now, since C(Y, a) is obtained as sum of continuous differ-

entiable and convex functions it follows that it is continuous, differentiable and convex. ¥
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Proof of Lemma 4.2. Let us write C∗(a1) explicitly in terms of the optimal configu-

ration Y ∗(a1) at a1,

C∗(a1) = a1 · q0,LN (Y ∗(a1)) · (1− qLN (Y ∗(a1)),N) · rB+

a1 ·
∑N

i=1 q0,Li(Y ∗(a1)) · [Ci(Y
∗(a1), a1) + C ′i(Y ∗(a1), a1)] +∑N

i=1 f ′iY
∗
i (a1).

Let us denote Y ≡ Y ∗(a1). Note that if C∗(a) is differentiable at a1, then there is a

neighborhood of a1 for which Y remains an optimal configuration. Now,

∂C∗(a)
∂a

(a1) = q0,LN (Y) · (1− qLN (Y),N) · rB+∑N
i=1 q0,Li(Y)

{
Ci(Y , a1) + a1

∂Ci(Y,a)
∂a

(a1)
}

+
∑N

i=1 q0,Li(Y)

{
C ′i(Y , a1) + a1

∂C′i(Y,a)

∂a
(a1)

}

≥ ∑N
i=1 q0,Li(Y)

{
Ci(Y , a1) + a1

∂Ci(Y,a)
∂a

(a1)
}

=
∑N

i=1

{
q0,Li(Y)

(
ci + hi

1
xi
−a1·q0,Li(Y)

)
+

a1·hi·q2
0,Li(Y)�

1
xi
−a1·q0,Li(Y)

�2

}

≥ ∑N
i=1

{
q0,i−1

(
ci + hi

1
xi
−a1·q0,i−1

)
+

a1·hi·q2
0,i−1�

1
xi
−a1·q0,i−1

�2

}

≥ ∑N
i=1

{
q0,i−1

(
ci + hi

1
xi
−a0·q0,i−1

)
+

a0·hi·q2
0,i−1�

1
xi
−a0·q0,i−1

�2

}
.

(13)

The first inequality is due to the facts that

q0,LN (Y) · (1− qLN (Y),N) · rB ≥ 0

and {
C ′i(Y , a1) + a1

∂C ′i(Y , a)

∂a
(a1)

}
≥ 0

for all i. This is because C ′i(Y , a) is a non-negative and increasing function of a. The

second inequality in (13) is due to the fact that q0,Li(Y ) ≥ q0,i−1, since Li(Y ) ≤ i − 1 for

any configuration Y . Now it is apparent that the expression

q

(
ci +

hi

1
xi
− a1 · q

)
(14)

is non-decreasing in q within the relevant domain. To see why the expression

a1 · hi · q2
0,Li−1(

1
xi
− a1 · q0,Li−1

)2 (15)

is also non-decreasing, we derive it with respect to q and obtain
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2 a2
1 hi q

2

(
1
xi
− a1 q

)3 +
2 a1 hi q(
1
xi
− a1 q

)2

which is also non-negative in the relevant domain of a and for all positive x and non-

negative h and q. The last inequality of (13) follows from the fact that expressions (14)

and (15) are also non-decreasing in a in the relevant domain and the fact that a0 < a1. ¥
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