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Bike-sharing systems allow people to rent a bicycle at one of many automatic rental 

stations scattered around the city, use them for a short journey and return them at any other 

station in the city. A crucial factor in the success of such a system is its ability to meet the 

fluctuating demand for both bicycles and vacant lockers at each station. In order to meet the 

demand, the inventory of each station must be reviewed regularly.  This paper introduces an 

inventory model suited for the management of bike rental stations and a numerical solution 

method used to solve it. Moreover, a structural result about the convexity of the model is 

proved.  The method may be applicable for other closed loop inventory systems. Extensive 

numerical study, based on real-life data is presented to demonstrate its effectiveness and 

efficiency. 
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1. Introduction and Literature Review 

Bike-sharing systems (BSSs) allow individuals to rent a bicycle at automatic rental 

stations scattered around a city, use them for a short journey, and finally, return them to 

any other station in the city. As of December 2010, some 238 cities around the world 

have deployed such systems and currently 53 are in planning (MetroBike LLC, 2011). 

For a review of the history of BSSs and on current trends, see DeMaio (2009).  

Bike-sharing programs encourage residents to use bicycles as an environmentally 

sustainable and socially equitable mode of transportation. Such programs also serve to 

complement other modes of mass transit systems by mode sharing. In addition to these 

transportation functions, a municipal BSS may yield revenue for a city in the framework 

of a compliance carbon offset market, (Capoor and Ambrosi, 2009).  
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 Modern BSSs are supported by information systems that provide data about the 

state of the system (i.e., the number of bicycle and lockers available at each station). This 

information is accessible on-line via the World Wide Web and in data kiosks at the 

stations. In addition, since the automatic rental stations identify the bicycles using radio 

frequency identification technology (RFID), operators can easily obtain detailed statistics 

regarding trips undertaken by users. This information can be used to support operational 

decisions and long-term planning.  

A crucial factor for the success of a BSS is its ability to cope reliably with 

fluctuating demand. Indeed, the main complaints voiced by BSS users relate to the 

unavailability of bicycles at their point of origin and even worse, unavailability of lockers 

at their destinations. For example, in order to improve Brussels’ bike-sharing program 

(Villo), a voluntary group of users created a web service that gathers inventory data from 

the city's BSS website in order to monitor the service level and create public pressure on 

the operator to improve the system. According to the group’s web site 

(http://www.wheresmyvillo.be/), they want to make “JCDecaux [the operator of Villo] 

drastically improve the availability of bikes and parking spaces through better 

reallocation of bikes”.  

Meeting the demand for bicycles and vacant lockers is a particularly challenging 

problem due to inherent imbalances in the renting and return rates at the various stations. 

While the flow of commuters is approximately balanced over the course of a day, this is 

not the case for the flow of bicycles. This is because a BSS may be used as a partial 

substitute for other modes of transportation. For example, users may choose to ride a 

bicycle in one direction and take a bus on their way back for a variety of reasons: weather 

or traffic conditions, availability and frequency of the bus service at the time of their 

journey, topography of their route, etc. In some cases, the imbalance is persistent, e.g. 

relatively low return rates at stations located on the top of hills. In other cases, the 

imbalance is temporary e.g., suburban train stations are apt to face high return rates in the 

morning, as commuters into the city drop off their bikes and high rental rates in the 

afternoon as commuters exit the train and begin to make their way home.  Satisfying user 

demand subject to such imbalances requires a dedicated fleet of light trucks to regularly 

transfer bicycles among stations. We refer to this activity as repositioning bicycles. 
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There are two repositioning modes. Static repositioning is performed during the 

night, when the system is nearly idle; dynamic repositioning takes place during the day in 

order to cope with looming shortages. In practice, many operators work in both modes.   

If one ignores the stochastic nature of the demand, the static bicycle-repositioning 

problem can be classified as a variation of the pickup and delivery problem (PDP), a type 

of problem that has attracted considerable attention in recent years. Berbeglia et al. 

(2007) surveyed the literature on static PDP and classified these problems according to 

various parameters. Benchimol et al. (2010) and Chemla et al. (2011) studied a single 

vehicle, single commodity, pickup and delivery problem without time constraints with 

the goal of minimizing the total travel distance of the vehicle as it completed a prescribed 

repositioning task. These studies are motivated by BSSs. Chemla et al. (2011) present a 

branch-and-cut algorithm for solving a relaxation of the problem, from which a feasible 

solution is obtained via a Tabu Search. Both of these papers assume a known target 

inventory level for each station in the system. 

Nair and Miller-Hooks (2011) used a stochastic programming approach to handle 

repositioning planning in shared mobility systems. Their model assumes that the cost of 

moving vehicles between two given stations is linear without considering the routing of 

the repositioning vehicles. This assumption is realistic for the one-way car-sharing 

systems that motivated their work. Vogel and Mattfeld (2010) presented a stylized model 

to assess the effect of dynamic repositioning efforts on service levels. Their model is 

useful for strategic planning but is not detailed enough to support repositioning 

operations. 

Some authors consider strategic decisions regarding the capacity and locations of bike 

rental stations. Shu et al. (2010) proposed a stochastic network flow model to support 

these decisions. They used their model to design a BSS in Singapore based on demand 

forecasts derived from current usage of the mass transit system. Lin and Yang (2011) 

considered a similar problem but formulated it as a deterministic mathematical model. 

Their model is aware of the bike path network and mode sharing with other means of 

public transportation. 

The static repositioning operation poses a new and challenging inventory routing 

problem. In this paper, we focus on the inventory management part of this problem. 
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Accordingly, we define a user dissatisfaction measure; model user behavior when facing 

shortages, and devise an efficient method of estimating the expected value of this 

measure given an initial inventory, station capacity, length of the replenishment cycle and 

the (stochastic) demand patterns. 

The inventory problem associated with a bike sharing rental station can be 

classified as a closed-loop inventory problem. There is considerable literature on this 

topic. For a comprehensive review, see Dekker et al (2004). However, the available 

models assume that the replenishment operations by new and used items occur 

periodically. These models do not capture the minute-to-minute dynamics of a bike rental 

station where replenishment by returned items occurs at a much higher frequency than 

replenishment by new items.  

The main contributions of this paper are: introducing a user dissatisfaction function 

to measure the performance of a station; presenting a dynamic inventory model of a bike 

sharing rental station; establishing the convexity of this function; and devising an 

efficient and accurate approximation method to estimate it. These results complement 

each other by providing practitioners and researchers with a set of tools that can be used 

to analyze and optimize many operational and strategic aspects of bike sharing systems. 

For some examples see the discussion in Section 6.  

The work of Nair and Miller-Hooks (2011) is close to this work in the sense that it 

also models the stochastic nature of the demand in a vehicle sharing system. In their 

study, the shortage is modeled as the difference between the total supply and the total 

demand over the planning horizon but without considering the sequence of the events.  

As an example, consider a station with a deterministic demand of 50 bicycles 

(rentals) per day and 40 lockers (returns) per day and assume that the inventory of the 

station is reviewed every night. According to the model of Nair and Miller-Hooks (2011) 

an initial inventory of 10 bicycles is sufficient to provide perfect service at the station. 

However, if most of the rentals are expected during the morning hours while most of the 

returns are expected during the afternoon, the station will face a high level of bicycle 

shortage during the morning.   

Our hands on experience with demand data from bike sharing systems shows that 

such extremely non-homogenous demand processes are common and in fact observed in 
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most of the stations.  Therefore, this study presents a model that tracks the inventory level 

in the station continuously throughout the planning horizon.  

As our model focuses on a single station, we omitted the interaction between the 

demand processes of the stations. However, we note that such interactions occur when 

users fail to realize their demand for bicycles or lockers at the desirable origin or 

destination.  Thus, in a well-operated system, the influence of these interactions on the 

optimal inventory level of each station is negligible. In section 5, we report on a 

simulation study conducted using historical data from operating bike sharing systems to 

demonstrate the usability of our model in supporting better decision making in real 

systems. 

The inventory model devised in this study is useful for supporting operational tasks 

such as inventory routing of bicycles among stations, see Raviv, Tzur and Forma (2011). 

It can also be used for strategic decision making regarding the system-wide inventory of 

bicycles as well as station size decisions (discussed in greater detail in the conclusion 

section). In addition we believe that our approach may be applicable for other closed-loop 

inventory systems.  

The bike-sharing station is modeled in this study as a double-ended queuing system 

introduced by Kashyap (1966). It is similar to a taxi queue at an airport or train station: 

there are either taxis waiting for people (equivalent of bicycles) or people waiting for 

taxis (equivalent of renters). Only one side is queued at a time. A steady state analysis of 

such a system and its variants are discussed in the queuing theory literature. For a 

discussion and references, see Srivastava and Kashyap (1982). For more recent studies 

considering the effect of user impatience, see Conollya, Parthasarathyb, and Selvarajub 

(2002). Mendoza, Sedaghat, and Yoon (2009) used the double-ended-queue model to 

study a model that aims to balance production rate (supply) and demand. However, none 

of these studies considered controlling this queuing system by modifying its state, i.e., 

exogenously adding or removing items from the queues. Consequently, none of these 

studies analyzed the transient dynamics of this model that are required to describe a bike 

sharing station that faces a non-homogenous demand process and the inventory of which, 

is revised periodically.  
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Notation and a formal definition of the model are presented in Section 2. The 

convexity of the user dissatisfaction measure is proved in Section 3.  In Section 4, a 

method to solve the model approximately under the assumption that the arrival processes 

are Poisson is devised. The results of numerical experiments that demonstrate the 

effectiveness and robustness of the approximation are presented in Section 5. In this 

section we also report on a simulation study conducted ahead of the implementation of 

the method presented in this study in a real bike-sharing system. We conclude with a 

discussion in Section 6 about possible applications of the approximation method and 

convexity property presented in this paper and some ideas for future research. In 

Appendix A, we describe a simulation based optimization procedure used in the 

simulation study of section 5 and in Appendix B we present an extension of our inventory 

model that allows customers to queue (or backlog) in the system. In Appendix C, we 

present the detailed results of our numerical experiment.  

 

2. Notation and Problem Formulation 

We consider a single bike-sharing station over a finite horizon        with the following 

settings: at time 0 the inventory level (number of bicycles) in the station is set. During the 

planning horizon, users that wish to rent or return bicycles arrive at the station according 

to arbitrary stochastic processes
1
. If the desired service can be provided right away, the 

bicycle is rented or returned and the inventory level is updated. If the service cannot be 

provided (i.e., empty station for a renter or full station for a bicycle returned) the user 

abandons the station immediately. In the case of renters, abandonment represents a 

decision of the user to either forgo using the system at this time or seek an available 

bicycle at a different station. In the case of a returner, the bicycle must be returned to 

another station. In both cases, we neglect the effect of interactions between stations in the 

system as we focus on a single station. We assume that the inventory of the station is not 

reviewed by a repositioning operation before time  .  In Appendix B, we also discuss a 

                                                

1 The computational method introduced in Section 4 assumes a non-homogenous Poisson arrival 

process but the robustness of the model with respect to this assumption is demonstrated in Section 5. 

Moreover, some structural results derived in Section 3 are independent of the nature of the arrival process.     
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more general inventory model where the users may queue in the warehouse when it is 

empty (for renters) or full (for returners). 

There are two sources of user dissatisfaction in the system according to this model 

and the system is penalized for each of them.   

  Penalty charged for each potential renter who abandons due to a shortage of 

bicycles. 

  Penalty charged for each returner who abandons due to a shortage of vacant 

lockers.  

 

The total number of lockers in a station is denoted by  . We refer to this value as 

the station capacity. Next, we present a notation that describes a particular realization of 

the demand over the given horizon.  Let    denote the set of epochs in which a demand 

for a bicycle occurs in given realization    where   
  denotes the     occurrence.    is a 

decision variable that represents the initial bicycle inventory of the station as set by the 

operator at the beginning of the planning horizon. The state of the system at time  , is 

denoted by   
      where   

              represents the number of bicycles currently 

in the station under a given realization  , and initial inventory   . Hereafter the 

realization and initial inventory arguments will be omitted for the sake of conciseness 

where they are apparent from the context. We denote the net demand for bicycles at time 

epoch   by   
           where negative values represent a demand for lockers, i.e., 

users that wish to return bicycles at the station. Clearly   
    for all     . The 

implicit assumptions that at each demand point only one bicycle is rented or returned 

causes no loss of generality since the time between epochs can be arbitrarily short. 

The dynamics of the station in a given demand realization is given by:  
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The number of renters that abandon the station at time epoch    
  is (      

   
  

 
 )

 

  and 

the number of returners that abandon is (     
   

  
 

   )
 

, where               . The 

user dissatisfaction function (UDF) is the expected penalty due to the abandonments of 

returners and renters as a function of the initial inventory   . 
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The bike sharing station inventory problem is to select the optimal value of 

          so as to minimize      . 

We point out that the value of the UDF is of interest for all initial inventory levels 

   and not only for the one that minimizes the function. This is due to the fact that in 

many cases it is impossible or too costly to set the initial inventory levels of all stations at 

their ideal values. In order to understand the trade-off between the number of bicycles in 

the various stations, the cost of repositioning bicycles and the service level, a method to 

efficiently calculate the UDF for all the stations in the system explicitly is required.  

3. Convexity of the User Dissatisfaction Function 

Recall that the user dissatisfaction function (1) expresses our measure for the expected 

penalty caused by a shortage of bicycles and lockers at a station. In this section, we prove 

that this function is convex with respect to the initial inventory   .  

The convexity of the UDF is of interest mainly since it allows optimizing the total 

UDF over all the stations in the system subject to some complicating constraints.  This is 

necessary in order to solve system-wide operational and strategic optimization problems.  

For discussion of possible applications of such an optimization problem, see Section 6.  

The convexity is also an indispensable property for optimization of the UDF by bisection 

when its evaluation for each possible initial inventory is impossible or too costly. For 

example, when the Markovian assumptions underlying the approximation procedure 

presented in Section 4 are violated and the only viable alternative is discrete event 

simulation.   

Let us define the marginal dissatisfaction function from additional units of initial 

inventory as 
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Clearly, this marginal value function is a discrete counterpart of the differential in a 

continuous function. Equivalently, if        is a non-decreasing function, then       is 

said to be convex. 

Theorem 1: The UDF,      , is a convex function of the initial inventory   . 

Proof: The outline of our proof is as follows: first, note that since the expected user 

dissatisfaction is obtained as a weighted sum of the user dissatisfaction over all possible 

realizations, it is enough to show that the total user dissatisfaction is convex for any 

particular realization. Next note that the total user dissatisfaction in a given demand 

realization is a weighted sum of two components, namely, the number of potential renters 

and the number of potential returners that abandon the station.  Therefore, it is enough to 

show that each one of these components is a convex function. 

For a fixed realization  , let us denote these two components by               

respectively. Consider the state of two hypothetical systems under the same demand 

realization that differ in their initial inventory level by one unit. Let us follow the process 

         and       . If          and            for all         then, there are no 

abandonees in either systems and thus                   for all  . However, if at 

some time    abandonment occurs in one of the processes then from this time on, the two 

processes coincide, that is                 for all     . Consequently, the difference 

between the numbers of abandonees in both systems is at most one. We say that the 

process        “hits” some value   at time    if the value of the process is changed to   at 

time   . For a given scenario there are three alternatives: 

1. If       hits 0 before          hits   for the first time, then   
        

        

  
         and   

        
          

       . 

2. If          hits C before        hits 0 for the first time, then   
        and 

  
       . 

3. If          never hits 0 and           never hits  ,  then   
        and   

       . 

Next, observe that   
           

          . This is due to the fact that 

         always hits 0 before           hits it. Note that it also possible that   
      

  and   
            or   

        
         . That is,   

      is a non-decreasing 
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function and so        is convex. Similarly   
             

        and thus        

is convex.  Q.E.D. 

 

4. Approximation of the User Dissatisfaction Function 

In this section we present a method for calculating the UDF under some sound modeling 

assumptions as to the nature of the stochastic process that governs the demand at each 

rental station. In particular, we assume that the arrival processes of renters and returners 

are non-homogenous Poisson processes with rates denoted by    and    respectively.  

The state of the station can be viewed as a non-time-homogenous birth and death 

process depicted as a Markov chain as seen in Figure 1. The birth rate is    and the death 

rate is   . 

 

  

Note that since the process    is controlled by setting its initial state, we are 

interested in the transient dynamics of the process rather than in its steady state. Let 

       denote the probability of the station being at state   at time   given that its initial 

state at time 0 was  . We use the notation      to refer to the whole transition probability 

matrix. For a Poisson demand process, it is possible to state the UDF (1), in terms of the 

transition probabilities as follows: 

       ∫ (                       )
 

 

    (2) 

The first term in the integral represents the expected user dissatisfaction 

accumulated when the station is empty. During such a period, abandonments occur at a 

rate of    and each bears a penalty of  . The second term represents the expected user 

dissatisfaction that accumulates when there are no vacant lockers at the station. During 

such a period of time, abandonments occur at a rate of    and each bears a penalty of  .  

C 1 0 
    

𝜆𝑡 𝜆𝑡 

  

𝜇𝑡 

  

𝜇𝑡 

1 

𝜆𝑡 

𝜇𝑡 

Figure 1: Continuous time Markov chain that represents the dynamics of the bicycles’ inventory level 
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The computational challenge in the evaluation of (2) is the calculation of the 

transition matrix     . There is no closed form solution for the dynamics of this system. 

In addition, it is important to note that no insight can be gained from a steady state 

analysis of some simplified version of the system, such as one with a homogenous arrival 

process. This is mainly since a properly operated station never approaches a steady state. 

Instead, the operator regulates the inventory level and periodically sets it at levels that 

may be far from the steady state mean. Only if the station is left untouched will it 

deteriorate to its steady state. Moreover, unlike other service systems such as contact 

centers, bike-sharing stations typically operate under low arrival rates. That is, the 

frequency in which the demand intensity is changed is high relative to the frequency of 

events in the system. 

Next, we present a procedure to estimate (2) using a discretization of the Markov 

chain in Figure 1. In the next section, we validate this procedure by comparing it to a 

simulation that requires numerous replications and is thus much more demanding 

computationally. We note that while the arrival rates of renters and returners is non-

homogenous over time, it is reasonable to assume that these rates change in a finite 

number of steps over a planning horizon, say every 15 minutes. This modeling 

assumption can be justified merely by the fact that it is typically impossible to estimate 

the arrival rates reliably for shorter periods. 

We discretize the planning horizon into short periods of length  . For each such 

period  , we evaluate the transition probability matrix from the beginning of the period 

until its end. We denote this transition probability by   . The transition probability matrix 

from time 0 to time    may be given as 

      ∏    

 

    

  

Moreover, using the recursive relation                   one can calculate all 

the transition matrices      for            in only 
 

 
 matrix multiplication operations 

once the values of     are estimated. Recall that since the arrival rates are constant during 

each period  , then         where    is the transition rate matrix of the Markov chain 
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in Figure 1 with transition rates that correspond to the time           . An 

approximation of     can be obtained by the identity 

      
   

(  
 

 
)

 

  

Where   is the identity matrix and the power operation corresponds to the matrix 

multiplications.  The limit can now be well approximated by calculating (  
 

 
)

 

 for 

some large  . [see Ross (2010), Section 6.8 for example].   

Based on the approximate value of     , we can obtain a reliable approximation of 

the user dissatisfaction function using the following discretization procedure  

       ∑(     (        )         (        )   )

 
 
  

   

   (3) 

Note that we use the transition probability to the midpoint,         , of each 

discretized period as it better represents the typical state of the station during the period 

 . The approximation procedure is parameterized by  . Clearly, as     the 

approximate value approaches      but the computational effort increases. The 

approximation error can be bounded as demonstrated below 

  

       ∑ (   (               (      ))   

 
 
  

   

    (               (      ))   )   

(4) 

 

       ∑ (   (               (      ))    

 
 
  

   

    (               (      ))    )   

(5) 

 

 Inequalities (4) and (5) are valid due to the fact that during each period  , the 

accumulated expected number of abandonments is monotonous, either non-increasing or 

non-decreasing depending on the relation between    and   . If the renter arrival rate is 
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greater than the returner arrival rate,       , the probability of the station being empty, 

        , increases during the period while the probability of the station being full, 

         decreases. Calculating the number of abandonments based on the lower between 

the probability of the station being empty (respectively, full) at the beginning of the 

period and at the probability of the station being empty (respectively, full)  at the end of 

the period,     (               (      )) [respectively,     (               (   

   ))], results in a lower bound while using the higher probability results in an upper 

bound.  

In Figure 2 below, we illustrate the effectiveness of the bounds described above. 

The UDF presented in the figure is for a 20-hour period (6am-2am) at one of the busiest 

stations of Capital Bikeshare in Washington DC, a station with 15 lockers. The arrival 

rate of users was estimated based on data collected in the station during weekdays in the 

winter of 2010-2011. The average number of arrivals and returners per day during this 

period was 60.88 and 65.12 respectively. The computation was based on time 

discretization of 15 and 5 minutes. The penalty per abandoment of both types was set to 

one        , accordingly, the y-axis represents the expected number of user 

abandoments per day. It is apparent from the graphs that while the approximation error 

can be bounded much more tightly with the finer discretization, both discretization levels 

produces very similar approximated UDFs. 

One interesting observation from the graphs is that although the station faces, on 

average, a similar number of renters and returners, it is best to set the initial inventory of 

the station to be almost empty. This is due to the fact that most of the returners, in this 

particular station, arrive in the morning while most of the renters arrive in the afternoon, 

as can be observed in Figure 3. Therefore, in order to reduce the chance that returners 

will arrive at a full station it is better to start with few bicycles at the station. During the 

morning hours the number of bicycles in the station will gradually increase due to a 

higher rate of returns than rentals and the station will be ready for the high rental rate 

expected during the afternoon. This is a typical situation for many stations that are 

located in city centers. 
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Figure 2: UDF and bounds, assuming users with no patience with discretization levels of 5 and 15 minutes 

 

 

Figure 3: Renters and returners arrival rate at a station 

Note that the computationally demanding part of (3)-(5) is the approximation of 

    . This calculation requires numerous matrix multiplications that can be implemented 

very efficiently and effortlessly using specialized mathematical packages such as 

Matlab™ or the open-source package Octave. Indeed, producing the data required for 

drawing the figures above takes a small fraction of a second on a modest desktop. 

5. Numerical Study 

The goal of the numerical study in this section is to demonstrate the accuracy, efficiency 

and effectiveness of the approximation method presented in Section 4 in supporting 

inventory decisions in a real bike sharing system. The accuracy is demonstrated by 
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comparing the obtained results to the lower and upper bounds presented in Section 4. The 

efficiency and effectiveness of our method is demonstrated via comparison with an 

alternative simulation-based optimization method (presented in Appendix A), and with 

the solution used by the expert planner before the method was adopted.   

Our study is based on demand data collected in Tel-O-Fun (www.tel-o-fun.co.il), 

the bicycle sharing system operator in Tel Aviv, Israel. As of February 2012, the Tel-O-

Fun system consisted of 129 stations, 2542 lockers, and about 1000 bicycles. The average 

demand faced by the system as of February 2012 was approximately 5000 rides per day, 

on regular weekdays. The demand patterns in most of the stations during this period did 

not change significantly, except for a uniform reduction in the volume during several 

particularly rainy days.  

The demand data was collected during 39 regular working days between December 

2011 and February 2012. We focus on the 82 busiest stations that faced almost all the 

demand in the system. Stations with an average demand of less than ten bicycles a day 

were ignored, since for these stations there was not enough data to obtain a reliable 

estimation of the demand process. Initially, the penalty cost associated with abandonment 

was set to        per occurrence. Later we demonstrate the robustness of our model 

with regard to these parameters. 

In order to test the efficiency and accuracy of the approximation method, we 

applied it to the 82 stations with three different discretization levels 

                        . Each of these instances was solved with our method and 

compared to the lower and upper bounds, (4) and (5). The code for these calculations was 

written in MathWorks Matlab™. The code as well as the input data of our experiment is 

available from the first author upon request. All the experiments were run on an Intel 

Core i7 ™ desktop under Windows 7 ™ 64 bits. For each instance we collected the 

following information: 

 The computation time (in seconds) including the calculation of the bounds (CPU 

time) 

 The maximum relative difference between either the lower or upper bounds over all 

possible initial inventory levels (Max Error) 

 The average relative difference between the bounds divided by two (Average Error) 
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 For           , the maximum relative difference between the values 

approximated by the corresponding discretization levels and value approximated 

with     (Max Diff.) 

Let us denote an approximated UDF using a discretization level of   minutes by       . 

Its lower bound as obtained with the same discretization level is denoted by         and 

the upper bound by        . The above quantities can be formally defined as follows: 

 

                {    
          

(
              

      
)     

          
(
              

      
)} 

                 
∑ [               ]  

     
 
    

      
 

                 
          

|
             

      
| 

In Table 1, we present summary statistics for the      tested instances. The first 

column of the table corresponds to the discretization level. The rest of the columns are 

divided into four groups. The first group presents statistics on the running time of the 

approximation algorithm (including the time needed to calculate the bounds); the second 

presents statistics on the maximal error; the third presents statistics on the average error 

and the last on the maximal difference. For each measure both the average and the 

maximum statistics over the 82 instances are reported. Detailed results for each instance 

are available in Appendix C, Table 2. 

Discretization  

Level 

CPU time (sec.) Max Error Average Error Max Difference 

Average Max. Average Max. Average Max. Average Max. 

    min. 0.264 0.297 0.48% 0.84% 0.40% 0.71% - - 

    min. 0.059 0.069 2.46% 4.37% 1.98% 3.53% 0.28% 2.48% 

     min. 0.016 0.022 16.30% 30.29% 11.85% 21.29% 7.17% 38.46% 

Table 1: Summary of accuracy test of the UDF approximation method 

 

 It is apparent from Table 1 that all the test instances could be approximated very 

quickly by the proposed method. Although the solution time increased with discretization 

level, even the hardest instance, corresponding to a station with 29 lockers and time 

discretization of one minute, could be solved in 0.297 seconds.  The average solution 
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time with the five minute discretization is about 500 times shorter than the time needed to 

obtain results with equivalent accuracy via simulation. This allows our method to be used 

for on-line decisions in large systems and as a subroutine in algorithms that solve system-

wide integrated models. 

The approximation accuracy seems to improve significantly, as the discretization 

level is increased. The maximal error for one-minute discretization was on average about 

a fifth (resp., 1/30 ) of the one obtained by a five-minute (resp., 30 minute) discretization. 

The solution time is on average about five times (resp., sixteen times) longer.  However, 

when comparing     with     the accuracy improvement is mainly due to the 

tightening of the bounds rather than actual changes in the approximated values. Indeed, 

the average (resp., maximum) relative difference between the one and the five minute 

discretization levels is, merely 0.28% (resp., 2.48%). Moreover, the optimal initial 

inventory level for all three discretization levels is the same in all the 82 tested stations.  

We conclude that the method can provide a fairly accurate approximation of the 

UDF even with five-minute time discretization. If the goal is only to find an optimal 

initial inventory for each station separately, it seems that even rougher time discretization 

can be used safety. Therefore, if it is necessary to solve numerous instances of the 

problem quickly, it is recommended to use rougher time discretization in order to save 

time. Furthermore, it is unlikely that further refinement of the discretization will lead to a 

significantly more accurate approximation. 

A crucial parameter for determining the optimal initial inventory level is the ratio 

between the penalties for bicycle shortage and locker shortage (namely   and  ). Note 

however, that a proportional change in the values of these parameters does not change the 

optimal solution but rather only scales its value.  Therefore, we fixed the bicycle shortage 

penalty and checked the effects of changes in the locker shortage penalty on the optimal 

solution and its value.  

In Figure 4, we plot the optimal initial inventory for the six busiest stations in Tel-

O-Fun against the value of   in the interval         when    .  This allows us to 

examine how changes in the ratio     affect the optimal decision. Naturally, the optimal 

initial inventory is non-increasing in this ratio since higher penalties for shortage of 

lockers implies that we should avoid this kind of shortage at the expense of taking the 
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risk of a higher shortage of bicycles. Therefore, a smaller initial inventory level is 

desired. However, it appears that the optimal inventory changes only slightly as the ratio 

increases from 0.5 to 2. The sharpest change in the initial inventory over the tested range 

is in Station 1, where the optimal initial inventory decreases from 24 to 20 over the entire 

range.  

   

 

Figure 4: Sensitivity analysis for penalty parameters   

In order to deepen our understanding regarding the sensitivity of the optimal 

inventory to the     ratio we checked the loss, in terms of the objective function value, 

when using the optimal inventory level assuming       while the actual ratio is 
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different. In 

 

Figure 5, we plot this loss against the     ratio for the same six stations. The value 

on the vertical axis represents the difference between the optimal value of the objective 

function for any given ratio and the value of the objective function with the same ratio 

when using the optimal inventory level obtained for      . One can observe that in the 

worst case (again, Station 1 for    ) less than 0.9 units are lost. This corresponds to an 

expected bicycle shortage of about 0.9 units or an expected locker shortage of about 0.45 

units. We conclude that the inventory model presented in this paper is robust to 

inaccuracies in the values of its shortage penalty parameters.   

 

Figure 5: Optimality loss due to inaccuracy in the     ratio 
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In the rest of this section, we report on a simulation study performed ahead of the 

implementation of the inventory model devised in this paper in Tel-O-Fun, The goal of 

this simulation study is to demonstrate the usability of the model in supporting better 

decision making regarding initial inventory levels to be set every night. Consequently, the 

company adopted the method in order to aid in the planning process of the repositioning 

operation carried out during the night.  

The main goal of the simulation study is to check the sensitivity of the results 

obtained from our method with respect to the assumption that the demand processes at 

the various stations in the system are independent. As discussed above, this simplifying 

assumption is undoubtedly inaccurate. However, we show that even with this assumption 

the model prescribes good decisions regarding the initial inventory. 

The chief planner of Tel-O-Fun devised the following procedure for planning the 

repositioning of bicycles during the off-peak hours of the night: first, a target level for 

each station is defined; then the city is divided into four operational districts and one 

driver is assigned to each district. The night shift drivers spend their shift attempting to 

bring the inventory level of each station to its target value by moving bicycles among the 

stations in their own districts or from/to the depot. The previous practice was that the 

target levels were updated periodically by the planner in a trial and error procedure. The 

initial inventory of stations that tended to run out of bicycles was gradually increased 

while the initial inventory of the stations that tended to run out of lockers was gradually 

decreased. 

While the capacity of many of the stations in the system is insufficient to avoid 

using static repositioning alone (even when the initial inventory levels are selected 

correctly), the dynamic repositioning currently eliminates most of the shortages and 

enables meeting nearly 100% of the demand. Consequently, the demand data collected by 

the system represents the true demands for rides fairly well.  

The main goal of the static repositioning in Tel-O-Fun is to reduce the amount of 

repositioning work to be done during the day. Therefore, we evaluated the quality of a 

solution by counting the number of bicycles that needed to be added or removed from the 

stations of the system during the next day, assuming the initial bicycle inventory level 
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prescribed by this solution. Equivalently, it is possible to count the number of shortages 

(of bicycles and lockers) assuming no repositioning is done during the day.  

In order to benchmark our method we simulated the system with three different 

settings of initial inventories. Namely, 1) The expert solution of the planner used during 

these particular days; 2) The model solution obtained by our method based on a forecast 

created using demand data collected during the previous 39 working days in January and 

December; 3) A solution obtained by a simulation-based optimization algorithm 

described in Appendix A. This algorithm is much more computationally demanding 

compared to our model. The simulation was based on actual demand data collected 

during the next five working days immediately subsequent to the period of the "training 

data". In the simulated system, no dynamic repositioning was performed; accordingly, the 

total number of abandonments approximately represents the extent of dynamic 

repositioning work needed in the system. We also recorded the time of the first 

abandonment in each station and counted the number of stations that faced no shortages 

during the day. 

Over the five day test period, the number of shortages under the expert solution was 

1953, system wide, while the one obtained under the model solution was 1604, a savings 

of more than 17% in the loading/unloading work left for the dynamic repositioning 

vehicles. Moreover, while in the expert solution, 61% of the stations should be visited by 

a repositioning vehicle during the day (on average), the model solution requires a visit in 

less than 51% of stations every day. That is, the dynamic repositioning vehicles can 

reduce their travel distance. This is of particular importance because the travel cost in the 

city during the day is significantly higher compared to nighttime. 

The simulation based optimization algorithm delivers a solution that is slightly 

inferior to the one obtained by our model. It yielded 1637 shortages during the five days 

test period and visits to 52.7% stations every day. In terms of computational effort, the 

simulation based procedure for all the 82 tested stations took more than half an hour, 

compared to a running time of less than one second of the Matlab implementation of our 

model with time discretization of      minutes. Recall that the same optimal initial 

inventories were obtained also with finer time discretization,      .  
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Indeed, the savings obtained by our model compared to the simulation-based 

optimization (about 2% less shortages) is not spectacular and the computation time of the 

simulation-based optimization is not prohibitive for such a medium range operational 

problem. However, it is nice to have a more accurate and more efficient computational 

method for this task especially if one wishes to integrate the model in a decision support 

system with ‘what-if’ capabilities. Moreover, if the inventory model is to be integrated as 

a subroutine of a more general algorithm, such as one that solves the repositioning 

(routing) problem, its efficiency may be crucial. An important conclusion from the results 

of this simulation study is that the assumptions, on which our method is based, are at least 

useful, if not accurate.  

 

6.  Discussion and Conclusions 

The inventory model presented in this paper can be used by operators of BSSs in their 

daily operations while rebalancing their systems. Moreover, the convexity property of the 

presented model together with the efficient approximation method make the results of 

this study very useful for various operational and strategic decisions that should be made 

by the BSS operators. In particular, the inventory model may serve as a building block 

for solving the following optimization problems:  

Optimal Global Bicycle inventory: The decision about the optimal number of 

bicycles in the system is a crucial tactical decision that should be reviewed by the 

operator whenever demand patterns or station capacity change. Clearly, if the global 

inventory is too low, the renter is more likely to face bicycle shortages; if it is too high, 

the returners are apt to face a shortage of lockers.  A rational inventory level to start with 

is equal to the total initial inventory in the stations of the system. 

System Wide Inventory allocation: In some cases the total number of bicycles 

that are available for the operator is limited. We believe that in the long run this 

constraint should be relaxed by ordering more bicycles, since the cost of the bicycles in a 

bike sharing system is small compared to the infrastructure cost. However, it is clear that 

in the short run, system wide shortage of bicycles is unavoidable. Therefore, the operator 

may need to determine initial inventory simultaneously at the stations subject to global 

inventory constraints.  This problem can be solved using the approximation method 
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presented in this paper and thanks to the convexity property. Optimal allocation is 

obtained by allocating the bicycles one by one in decreasing marginal value of the UDF 

(across all stations in the system).  

Repositioning: Preliminary results of this study were used by Raviv, Tzur and 

Forma (2012) to formulate a mixed integer linear model for routing inventory in order to 

rebalance stations using a fleet of vehicles subject to capacity and time constraints. The 

sum of the UDFs of all stations is incorporated into the objective function of the 

repositioning model rather then used to prescribe target inventory levels. This approach 

takes advantage of the fact that the UDF is typically flat around the optimal level and thus 

in many cases it is not worthwhile to visit a station that is off but near its optimal 

inventory level.  

 We believe that the single station inventory model presented in this paper may be 

very useful for BSS operators. However, like any mathematical model, it is based on 

some simplified assumptions. In particular, the model presented here omits complex 

interdependencies among the different stations. In fact, we see two types of such 

interdependencies. First, the demand process at each station may be affected by the state 

of its neighboring stations since unsatisfied renters and returners are likely to seek service 

in neighboring stations. Second, the arrival processes of returners at destination stations 

are affected by the state of other origin stations. Indeed, if a renter decides to abandon the 

system at Station   because it is empty, she will never be a returner at her presumed 

destination  . Moreover, in the long run, the service level experienced by users affects 

their demand in future periods since disappointed users are less likely to use the system 

again. In conclusion, we believe that future researchers should create detailed and 

empirically supported user behavior models. Such a model is unlikely to be efficiently 

computable but studying it by simulation may help to validate and fine tune the model 

presented here.  

BSS operators generally sign service level agreements with the municipal 

authorities. In some of these agreements the service level is defined as the percentage of 

the time in which the station is allowed to be completely empty or completely full. For 

example, the operator may be committed to ensuring that none of the stations will be in 

such states more than 5% of the time each day. The parties agree upon a penalty for each 
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breach of this commitment. We believe that this is an inaccurate measure for service 

level.  The service level is affected not only by the length of the periods in which the 

station cannot provide the service but also and more importantly, by the timing of these 

periods. For example, an empty station next to a high school just before the beginning of 

the school day is desirable because such a station can accept the expected wave of 

returners. However, if the same station is empty in the afternoon, just before the end of 

the school day, it is likely to provide a poor service for the expected wave of renters. We 

therefore argue that the (estimated) number of unsatisfied renters and returners is a more 

appropriate service level measure and that it should be included in service level 

agreements between cities and BSS operators. Indeed, this measure cannot be calculated 

accurately but it can be easily estimated from the system log. However, if the operator is 

interested in minimizing the length of the period in which the station is empty or full, the 

definition of the UDF in (2) should be modified to 

       ∫ (                 )
 

 

    

The adaptation of the approximation formula (3) is straightforward. 

Finally, we would like to point out that the sharing economy is not limited to shared 

mobility systems. While the concept of renting equipment instead of buying it is not new, 

modern information technology makes it a very attractive alternative. For example, 

construction firms may prefer renting power tools and machinery at the time and location 

where they need them instead of owning and transporting them. Similarly, some 

individuals may prefer renting camping equipment in order to save the need to store it at 

their apartments, etc. Managing the supply chain of a multi-branch renting organization is 

a challenging task compared to a retail organization due to the need to cope with the 

dynamics of at least two incoming streams of goods: returned items and items acquired 

vertically or horizontally from other echelons.  The literature on reverse logistics is 

extensive but primarily focused on systems with items that must be reprocessed in some 

way before being delivered again. However, in the rental business, returned items can be 

used again immediately after they are returned. Modeling such systems requires 

integrating inventory and queuing models. Therefore, we believe that the modeling 



 

 

25 

 

concepts and solution methods presented in this paper may be relevant for many 

problems originating from the growing sector of renting/sharing organizations. 
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Appendix A – Simulation based optimization 

In this appendix, we describe the simulation-based optimization procedure used in 

the simulation study reported in Section 5. An internally documented Matlab 

implementation of this procedure is available upon request from the first author. 

We used the demand data of the two months (39 working days) prior to the test 

period as input for the simulation of each station. We refer to this period as the training 

period and point out that it is the same data used to create the demand forecast used by 

the model. The dynamics of the inventory level in each station based on this demand 

were simulated assuming all possible initial inventory levels       and the level that 

minimized the total number of shortages over the training period was selected for each 

station. This level was then used as the initial inventory level for the test period to 

estimate the expected number of shortages, assuming no dynamic repositioning, in the 

test period as reported in Section 5. 

Alternatively, we could estimate the demand process based on the data of the 

training period and run the simulation with numerous replications. Clearly, as the number 

of replications grows, this procedure should converge to the solution obtained by our 

model. However, the usage of the actual demand data instead of estimating the demand 

process exhibits the attractive property of robustness to the assumption that the demand 

process is Poisson. 
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Appendix B – Extended model 

Throughout this paper, we assumed that all the renters and returners abandon the station 

if they cannot obtain the service that they are seeking (i.e., an available bicycle or a 

vacant locker).  This is a good approximation of the reality in well-operated bike-sharing 

systems since it is likely that the desired service can be obtained in a nearby station.  

However, in this appendix we define a more general inventory model where renters 

that arrive at an empty warehouse can decide either to queue (or backlog) and to wait for 

an item or to abandon. Similarly, returners may decide to wait for a vacant space in the 

warehouse.  

We note that while this generalization is unnecessary for bike-sharing systems, it 

may be useful for other closed loop inventory systems where the rental and return 

processes are intense enough to make waiting for an item a reasonable choice in some 

cases or in settings where backlogging is a viable alternative.   

 

Extended Model 

The state of the system    in the extended model is assumed to take any integer value 

           , where values            represent a warehouse with    items and no 

queues. A value      represents an empty warehouse and a queue of     represents 

would-be renters. A value      represents a full warehouse with   items and a queue of 

     would-be returners. 

We model the decision whether to queue or not queue as a Bernoulli random 

variable where the probability of success is determined by the length of the queue and the 

time of day. Indeed, these two factors affect the distribution of the waiting time of each 

user since the queue of renters is served at a rate that is equal to the returners' rate and 

vice versa. We further assume that the decision to abandon is made immediately upon the 

arrival of the user at the warehouse and after witnessing the length of the queue. The 

likelihood of the renter (resp., returner) joining the queue at time   is denoted by the 

function         [resp.,       ]. Clearly,          for all      and          for all 

    .  The original model solved in Section 4 is clearly a special case of this model 

where          for all      and          for all     .  
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We further assume that the arrival processes of potential renters and returners are 

Poisson processes with rates    and   . Accordingly, the actual demand rates faced by the 

station are          and         . Consequently, the system can be represented as an 

unbounded non-time-homogeneous birth and death process as depicted in Figure 6. 

 

 

Figure 6: Continuous time Markov chain representing the dynamics of the items’ inventory level 

In the extended model the user dissatisfaction stems from two different factors: 

abandonment due to the inability of the system to provide the service within an 

acceptable time period and the waiting time at the station. Each of these phenomena can 

affect both renters and returners. The system is penalized for each of these event types as 

detailed below:  

   Penalty charged for each renter who abandons due to shortage of items. 

   Penalty charged for each returner who abandons due to shortage of storage 

space.  

   Penalty charged per time unit of a renter waiting for an available item.  

   Penalty charged per time unit of a returner waiting for a vacant storage space.  

   

Note that,    and    are equivalent to the   and   parameters of the original model. 

Using the same notation as in section 4, we defined the extended UDF as follows: 
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(6) 

The first summation term in the integral represents the expected user dissatisfaction 

accumulated when the station is empty. During such a period, abandonments occur at a 

rate of   (       ) and each bears a penalty of   . In addition, the total waiting time of 

renters is accumulated at a rate that is equal to the queue length   . The second 

summation term represents the expected user dissatisfaction that accumulates when there 

are no vacant lockers at the station. During such a period of time, abandonments occur at 

a rate of   (       ) and each bears a penalty of   . In addition, the total waiting time 

of returners is accumulated at a rate that is equal to the queue length,    . 

A discretization method, similar to the one presented in Section 4, can be used to 

approximate (6). However, since the state space of the extended chain is infinite, one 

needs to truncate all the states that are extremely unlikely to occur within the planning 

horizon. Fortunately, it is reasonable to assume that the tendency of users to queue in the 

station drops rapidly with the length of the queue and therefore states with values that are 

much higher than the station capacity or much lower than zero can be safely truncated.  

 

Approximation procedure 

In order to carry out the discretization, we assume that the tendency to join the queue is 

constant for each discretized period. That is, for each short period   these tendencies can 

be represented by a constant        and       . Based on the approximate value of     , 

we can obtain a reliable approximation of the user dissatisfaction function using the 

following expression: 
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(7) 

where    (respectively,  ) denotes an upper bound on the length of the queue of renters 

(respectively, returners). We suggest setting the value of   and   as follows 
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for some small    . That is, the chain is truncated on arrival at the first state from 

which on, the probability of an increase in the queue length upon the next event is 

negligible. The approximation procedure is parameterized by   and  .  Clearly, as  

      the approximated value approaches       but the computational effort increases. 

Extensive numerical experiment, whose result can be on obtained from the first author 

upon request shows that this procedure yield results that agree nicely with simulation. 

 

Appendix C – Detailed Results of Tel-O-Fun Case study 

In this appendix, we present the detailed results of our numerical study.  In Section 5, 

Table 1, we presented summary statistics of the accuracy test with various discretization 

levels. Here in Table 2, we present the results calculated for each of the 82 instances. The 

first column identifies the station (the true identity is concealed as per the request of the 

operator). The second column specifies the station capacity. The rest of the columns are 

divided into three groups, each correspond to one of the three tested discretization levels. 

For each level we present the computation time, max error and average error.  For 

definition and discussion of these measures see Section 5.  

Station ID C 
    min.     min.      min. 

Time  
(sec.) 

Max 
Error 

Average 
Error 

Time  
(sec.) 

Max  
Error 

Average  
Error 

Time  
(sec.) 

Max  
Error 

Average 
Error 

1 20 0.257 0.42% 0.32% 0.058 2.10% 1.59% 0.016 13.24% 9.50% 

2 20 0.258 0.36% 0.29% 0.057 1.80% 1.45% 0.016 11.36% 8.72% 
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3 18 0.255 0.39% 0.31% 0.056 1.97% 1.55% 0.014 12.52% 9.33% 

4 20 0.256 0.65% 0.53% 0.057 3.32% 2.67% 0.016 23.37% 16.05% 

5 20 0.264 0.53% 0.35% 0.057 2.66% 1.73% 0.014 17.23% 10.41% 

6 20 0.269 0.81% 0.58% 0.059 4.14% 2.88% 0.015 29.00% 17.43% 

7 20 0.258 0.79% 0.54% 0.055 4.11% 2.68% 0.016 30.29% 16.08% 

8 20 0.269 0.74% 0.53% 0.060 3.81% 2.67% 0.016 26.66% 16.10% 

9 20 0.263 0.43% 0.33% 0.060 2.15% 1.67% 0.017 13.38% 10.04% 

10 17 0.257 0.39% 0.30% 0.057 2.00% 1.50% 0.015 13.02% 9.03% 

11 17 0.261 0.49% 0.38% 0.058 2.46% 1.88% 0.015 15.30% 11.24% 

12 19 0.248 0.43% 0.35% 0.055 2.19% 1.76% 0.015 13.85% 10.55% 

13 20 0.261 0.63% 0.46% 0.062 3.18% 2.30% 0.016 21.17% 13.87% 

14 20 0.271 0.38% 0.31% 0.059 1.89% 1.54% 0.017 12.17% 9.25% 

15 20 0.263 0.30% 0.26% 0.057 1.52% 1.32% 0.015 9.44% 7.93% 

16 20 0.269 0.30% 0.25% 0.062 1.50% 1.26% 0.018 9.36% 7.58% 

17 20 0.264 0.43% 0.33% 0.062 2.16% 1.65% 0.017 13.68% 9.90% 

18 20 0.272 0.36% 0.30% 0.061 1.84% 1.50% 0.017 11.87% 8.95% 

19 16 0.260 0.43% 0.40% 0.058 2.19% 1.99% 0.015 14.65% 11.84% 

20 20 0.276 0.36% 0.31% 0.060 1.82% 1.53% 0.017 10.94% 9.11% 

21 20 0.272 0.45% 0.41% 0.058 2.29% 2.06% 0.016 15.90% 12.31% 

22 20 0.254 0.42% 0.35% 0.057 2.16% 1.75% 0.016 15.00% 10.39% 

23 17 0.268 0.47% 0.37% 0.060 2.40% 1.85% 0.016 15.16% 11.10% 

24 19 0.252 0.41% 0.34% 0.054 2.05% 1.68% 0.015 12.53% 10.04% 

25 20 0.254 0.65% 0.45% 0.058 3.31% 2.26% 0.016 21.20% 13.61% 

26 20 0.258 0.44% 0.36% 0.059 2.24% 1.82% 0.017 15.09% 10.92% 

27 20 0.262 0.50% 0.42% 0.058 2.50% 2.09% 0.016 15.53% 12.34% 

28 20 0.256 0.48% 0.42% 0.056 2.42% 2.10% 0.015 16.01% 12.53% 

29 20 0.257 0.44% 0.37% 0.059 2.21% 1.87% 0.015 13.42% 11.20% 

30 20 0.257 0.50% 0.43% 0.058 2.50% 2.14% 0.016 15.49% 12.83% 

31 17 0.265 0.43% 0.39% 0.056 2.18% 1.96% 0.014 14.82% 11.62% 

32 20 0.262 0.47% 0.36% 0.060 2.35% 1.78% 0.016 15.65% 10.69% 

33 29 0.297 0.84% 0.71% 0.066 4.37% 3.53% 0.021 29.80% 21.29% 

34 19 0.247 0.38% 0.29% 0.055 1.92% 1.47% 0.014 12.42% 8.85% 

35 20 0.253 0.49% 0.46% 0.057 2.48% 2.30% 0.015 15.50% 13.83% 

36 20 0.273 0.51% 0.44% 0.061 2.63% 2.18% 0.017 17.15% 13.02% 

37 28 0.295 0.60% 0.44% 0.069 3.23% 2.19% 0.022 23.90% 12.95% 

38 20 0.265 0.60% 0.53% 0.058 3.03% 2.67% 0.016 18.77% 16.01% 

39 20 0.261 0.67% 0.55% 0.059 3.47% 2.74% 0.017 23.99% 16.44% 

40 20 0.269 0.39% 0.34% 0.058 2.01% 1.68% 0.016 13.73% 10.06% 

41 20 0.255 0.57% 0.40% 0.057 2.97% 1.98% 0.015 21.84% 11.79% 

42 20 0.264 0.43% 0.39% 0.057 2.23% 1.96% 0.016 15.64% 11.64% 

43 18 0.253 0.48% 0.44% 0.056 2.40% 2.19% 0.015 15.18% 13.07% 

44 20 0.256 0.32% 0.28% 0.058 1.59% 1.40% 0.016 9.72% 8.38% 

45 20 0.255 0.47% 0.42% 0.058 2.41% 2.09% 0.016 15.86% 12.52% 

46 23 0.255 0.45% 0.38% 0.061 2.35% 1.90% 0.017 17.04% 11.21% 

47 20 0.275 0.48% 0.42% 0.062 2.41% 2.12% 0.017 15.20% 12.67% 

48 20 0.265 0.59% 0.50% 0.060 3.02% 2.50% 0.016 20.28% 14.96% 

49 20 0.271 0.56% 0.44% 0.058 2.94% 2.20% 0.016 21.05% 13.11% 

50 19 0.265 0.46% 0.38% 0.056 2.34% 1.90% 0.014 14.82% 11.34% 

51 20 0.257 0.39% 0.31% 0.057 2.00% 1.57% 0.016 13.61% 9.22% 

52 20 0.256 0.43% 0.35% 0.056 2.19% 1.74% 0.015 14.72% 10.32% 

53 20 0.259 0.31% 0.27% 0.057 1.53% 1.35% 0.016 9.34% 8.08% 

54 20 0.259 0.53% 0.43% 0.057 2.74% 2.16% 0.015 19.39% 12.83% 

55 19 0.248 0.53% 0.48% 0.055 2.71% 2.42% 0.015 17.10% 14.40% 

56 20 0.254 0.54% 0.46% 0.060 2.74% 2.32% 0.016 17.57% 13.70% 

57 20 0.257 0.54% 0.48% 0.057 2.73% 2.38% 0.016 17.59% 14.22% 

58 20 0.256 0.39% 0.30% 0.061 1.99% 1.48% 0.015 14.07% 8.86% 

59 20 0.258 0.33% 0.30% 0.058 1.69% 1.50% 0.015 10.80% 8.93% 

60 20 0.257 0.56% 0.46% 0.057 2.84% 2.32% 0.016 18.39% 13.86% 

61 20 0.256 0.49% 0.38% 0.057 2.49% 1.92% 0.015 15.96% 11.50% 

62 20 0.268 0.61% 0.49% 0.058 3.11% 2.43% 0.017 21.09% 14.61% 

63 19 0.246 0.38% 0.35% 0.056 1.92% 1.74% 0.014 11.90% 10.44% 

64 20 0.256 0.50% 0.36% 0.057 2.52% 1.80% 0.016 16.64% 10.85% 

65 20 0.258 0.47% 0.41% 0.069 2.39% 2.07% 0.018 15.99% 12.34% 
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66 20 0.281 0.64% 0.59% 0.059 3.27% 2.96% 0.020 22.15% 17.77% 

67 20 0.285 0.56% 0.42% 0.064 2.92% 2.10% 0.019 20.47% 12.50% 

68 20 0.272 0.56% 0.48% 0.064 2.86% 2.39% 0.016 18.74% 14.36% 

69 16 0.261 0.62% 0.47% 0.055 3.17% 2.35% 0.013 21.34% 14.18% 

70 18 0.281 0.47% 0.43% 0.056 2.44% 2.14% 0.015 17.06% 12.73% 

71 20 0.279 0.28% 0.25% 0.059 1.41% 1.26% 0.017 8.58% 7.58% 

72 17 0.267 0.45% 0.42% 0.061 2.31% 2.11% 0.015 15.43% 12.68% 

73 20 0.281 0.38% 0.33% 0.064 1.95% 1.64% 0.017 13.52% 9.78% 

74 20 0.284 0.56% 0.47% 0.058 2.86% 2.35% 0.019 19.48% 14.13% 

75 20 0.293 0.33% 0.29% 0.061 1.66% 1.47% 0.018 10.17% 8.75% 

76 20 0.267 0.36% 0.31% 0.060 1.81% 1.55% 0.015 11.24% 9.28% 

77 20 0.256 0.31% 0.28% 0.058 1.55% 1.39% 0.017 9.86% 8.33% 

78 20 0.269 0.45% 0.38% 0.062 2.30% 1.91% 0.017 15.18% 11.38% 

79 20 0.272 0.59% 0.46% 0.062 3.01% 2.28% 0.016 19.81% 13.71% 

80 20 0.270 0.51% 0.38% 0.057 2.60% 1.92% 0.016 16.98% 11.49% 

81 18 0.252 0.62% 0.49% 0.056 3.16% 2.47% 0.014 21.75% 14.82% 

82 20 0.257 0.32% 0.29% 0.058 1.61% 1.46% 0.016 10.22% 8.77% 

Table 2: Results the accuracy test 

In our simulation study in Section 5, we compared the performance of the system 

under the initial inventory prescribed by our method with results obtained from 

simulation-based optimization (See appendix A) and the current practice.  The detailed 

results for the five-day test period are presented in Table 3. The first column identifies the 

station. The capacity of the station is presented in the second column. The rest of the 

columns in the table are divided into three groups. The first refers to the expert solution, 

the second to the optimization method introduced in this study and the last to simulation 

based optimization. In each group, the first column reports the target initial inventory 

     suggested by the method. The second column reports the total number of bicycles 

that should be removed and/or added to the station during the five-day test period in order 

to avoid shortages. The third column reports the number of days (out of the five) in which 

at least one visit of the repositioning vehicle was required at the station. 

 

Station Capacity 
Expert Solution Our Model Simulation Based  

X0 Work Visits X0 Work Visits X0 Work Visits 

1 20 8 2 1 11 0 0 10 0 0 

2 20 5 6 2 11 0 0 9 0 0 

3 18 4 9 4 9 0 0 8 0 0 

4 20 8 0 0 3 2 1 2 3 1 

5 20 7 0 0 9 0 0 6 0 0 

6 20 2 19 4 2 19 4 1 15 4 

7 20 14 34 4 18 28 4 19 28 4 

8 20 5 8 2 4 6 1 3 5 1 

9 20 4 12 3 7 11 2 7 11 2 

10 17 5 7 3 8 5 1 8 5 1 

11 17 10 26 5 10 26 5 9 25 5 

12 19 6 1 1 8 0 0 7 0 0 

13 20 5 0 0 8 0 0 8 0 0 

14 20 5 1 1 9 0 0 8 0 0 

15 20 13 5 2 11 1 1 12 3 2 
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16 20 5 9 2 9 11 1 9 11 1 

17 20 10 0 0 10 0 0 10 0 0 

18 20 10 1 1 11 2 1 11 2 1 

19 16 14 20 4 12 21 5 12 21 5 

20 20 5 0 0 5 0 0 5 0 0 

21 20 14 18 4 16 15 2 15 16 3 

22 20 10 62 5 15 41 4 14 43 4 

23 17 5 25 4 12 20 1 11 19 1 

24 19 4 2 2 9 0 0 9 0 0 

25 20 5 38 5 10 17 4 8 23 5 

26 20 12 11 3 12 11 3 11 10 3 

27 20 12 48 5 15 33 5 14 38 5 

28 20 17 28 4 15 25 5 14 24 5 

29 20 8 16 4 13 8 3 13 8 3 

30 20 14 3 1 12 1 1 10 0 0 

31 17 15 16 4 13 12 4 12 11 4 

32 20 15 8 2 15 8 2 15 8 2 

33 29 2 20 5 2 20 5 2 20 5 

34 19 4 12 3 9 0 0 9 0 0 

35 20 4 2 1 7 5 2 6 3 2 

36 20 15 29 5 14 30 5 14 30 5 

37 28 20 63 4 23 57 4 22 59 4 

38 20 8 3 2 8 3 2 8 3 2 

39 20 2 15 4 2 15 4 2 15 4 

40 20 14 12 2 13 12 2 12 12 2 

41 20 16 17 3 18 22 5 18 22 5 

42 20 16 36 5 15 37 5 14 38 4 

43 18 16 50 5 13 41 5 13 41 5 

44 20 7 5 1 9 8 2 9 8 2 

45 20 8 56 5 3 31 5 2 28 5 

46 23 16 21 4 16 21 4 15 22 5 

47 20 14 33 4 14 33 4 13 32 5 

48 20 2 51 5 2 51 5 2 51 5 

49 20 16 38 5 17 33 5 18 30 5 

50 19 12 21 3 14 15 3 12 21 3 

51 20 2 107 5 9 86 5 7 90 5 

52 20 2 33 5 9 6 3 8 9 3 

53 20 5 6 3 10 2 1 9 1 1 

54 20 20 87 5 18 81 5 18 81 5 

55 19 6 59 5 6 59 5 6 59 5 

56 20 2 89 5 2 89 5 2 89 5 

57 20 6 50 5 3 41 5 4 44 5 

58 20 18 33 5 11 18 2 10 18 2 

59 20 20 161 5 18 153 5 18 153 5 

60 20 4 14 4 4 14 4 3 19 5 

61 20 8 3 1 10 1 1 9 2 1 

62 20 2 17 2 2 17 2 2 17 2 

63 19 5 6 1 8 9 3 8 9 3 

64 20 3 1 1 5 0 0 4 0 0 

65 20 8 7 2 13 3 1 14 4 1 

66 20 2 29 4 7 16 4 6 16 4 

67 20 18 41 4 17 39 4 18 41 4 

68 20 2 113 5 2 113 5 2 113 5 

69 16 2 8 4 4 2 1 4 2 1 

70 18 6 11 3 6 11 3 6 11 3 

71 20 2 5 3 8 0 0 8 0 0 

72 17 2 2 2 2 2 2 3 2 1 

73 20 13 20 3 13 20 3 13 20 3 

74 20 10 9 3 14 0 0 13 1 1 

75 20 3 14 4 9 1 1 7 3 1 

76 20 5 4 2 8 0 0 6 2 2 

77 20 8 0 0 13 0 0 12 0 0 

78 20 17 64 5 13 48 5 13 48 5 
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79 20 2 5 2 4 3 2 3 4 3 

80 20 5 9 3 5 9 3 4 8 2 

81 18 4 9 2 11 4 2 12 7 3 

82 20 6 0 0 9 0 0 9 0 0 

Average 
 

8.37 23.60 3.06 9.80 19.56 2.55 9.29 19.96 2.63 

Total 
 

686 1935 251 804 1604 209 762 1637 216 

            Table 3: Results of Tel-O-Fun simulation study 

 


