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In this study, we propose improving the performance of one-way vehicle sharing systems by 

incorporating parking reservation policies. In particular, we study a parking space reservation policy in 

which, upon rental, the users are required to state their destination and the system then reserves a 

parking space for them until they arrive at their destinations. We measure the performance of the 

vehicle sharing system by the total excess time users spend in the system. The excess time is defined as 

the difference between the actual journey time and the shortest possible travel time from the desired 

origin to the desired destination. A Markovian model of the system is formulated. Using this model, we 

prove that under realistic demand rates, this policy improves the performance of the system. This result 

is confirmed via a simulation study of a large real system, Tel-O-Fun, the bike-sharing system in Tel-

Aviv. For all the tested demand scenarios, the parking reservation policy reduces the total excess time 

users spend in the system, with a relative reduction varying between 14% and 34%. Through the 

simulation we examine additional service-oriented performance measures and demonstrate that they all 

improve under the parking reservation policy. 
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1. Introduction 

Public transportation in modern cities is typically composed of bus systems, trams, subway and taxi 

services. Such a mix can satisfy most of the citizens’ travel demands, but nevertheless many citizens 

still prefer to use private vehicles. This can be attributed to the fact that public transportation is 

usually limited as far as service areas (depending on the planned lines), operating hours, and service 

frequency. A private vehicle is available at any time and allows greater flexibility such as: out of city 

trips, traveling with cargo (groceries, baby carriages etc.). In addition, a private vehicle may be the 

choice of people who do not live within walking distance of public transportation stations (the ‘last 

mile’ problem) or who merely prefer not to travel with strangers. However, the cost of owning a 

private vehicle is typically higher compared to using public transportation. Moreover, the average car 

is used for less than an hour daily. The rest of the time it sits idle and takes up a parking space. This 

represents low utilization of highly needed resources (both the vehicle and the parking space), 

especially in city centers.  

To fill the gap between the advantages of using private vehicles and the services offered by 

public transportation, in recent years, many cities around the world have developed station-based one-

way vehicle sharing systems such as car-sharing and bike-sharing systems. One-way systems allow 

users to rent a vehicle at one of the system’s stations scattered around the city, use it for a short time 
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period and return it to any of the system’s stations. A station is a group of parking spaces where the 

vehicles are parked while not in use, in some cases next to a terminal through which the service is 

provided. We note that some one-way vehicle-sharing systems are operated as free-floating, i.e. a 

vehicle may be parked anywhere within the boundaries of the city. Such systems are not in the scope 

of this study. Our study focuses on station-based one-way vehicle sharing systems, although we 

sometimes omit, for brevity, the phrases 'station-based' and 'one-way'. For a review of the history of 

vehicle sharing systems, description of the various business models and prospects for the future, see 

Shaheen and Cohen (2007), DeMaio (2009) and Shaheen et al. (2010).   

For example, a commuter who traveled in the morning using the subway and wishes to do some 

shopping at the end of the work day, can rent a car near her work and return it to a station located near 

her home. A user, who does not live within walking distance from a public transportation station, may 

be able to rent a bicycle at a nearby station and return it near the public transportation station.  

Vehicle sharing systems typically rely on information and communication technology, such as 

3G communication and GPS, to allow the operators and the users to check the availability, location 

and status of each vehicle in the system online. The wide spread use of smartphones increased the 

usability of vehicle sharing systems by making this information accessible to the system’s users any 

time, any place. 

In recent years, there has been a rapid increase in the deployment of car sharing and bike sharing 

systems around the world. As of October 2012, car sharing systems were operating in 27 countries, 

accounting for an estimated 1,788,000 shares over 43,500 cars (Shaheen and Cohen, 2012(. A notable 

one-way car-sharing system is Autolib, currently operating in Paris with 1,800 electric cars, 4,000 

parking spaces and more than 65,000 users (Kanter, 2013). In May 2011 there were an estimated 136 

bike sharing programs, with 237,000 bicycles on the streets (Shaheen and Guzman, 2011). As of 

February 2013, these numbers were significantly higher, with about 500 active bike sharing systems 

worldwide and more than 150 in planning, with over 600,000 bicycles in use in the active systems 

(DeMaio and Meddin, 2013). 

Due to the implementation of car-sharing systems, more citizens may give up their private 

vehicles and switch to public transportation. Surveys conducted by car-sharing companies and cities 

who implemented such systems have shown that the use of car-sharing systems has not only reduced 

the number of vehicles on the roads but it also reduced the number of executed trips, as users changed 

their traveling habits (Zhao, 2010). Hence, car-sharing systems may assist in reducing city traffic 

congestion and improving utilization of city land resources, as the demand for wider roads and 

parking spaces may decrease. Furthermore, many car-sharing systems are based on electric cars which 

are less polluting. Bike-sharing systems are clearly also environment friendly vehicles. Although the 

prevailing approach is that bike-sharing systems promote the use of public transport by providing a 

solution for the “last mile” problem (Martens, 2007 and Shaheen et al., 2010), other studies argue that 
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bike-sharing systems compete with public transport on the same share of users, see Midgley (2011) 

and Kumar et al. (2013). 

A distinction should be made between round-trip vehicle-sharing systems and one-way vehicle-

sharing systems. While in the former a user must return the vehicle to the same station in which it was 

rented, in the latter, a user may return the vehicle to any of the system’s stations. Clearly, the 

flexibility of one-way systems makes them more useful for their users. However, this flexibility 

creates an intricate challenge to the operators due to the need to redistribute vehicles in the system in 

order to meet the demand. For this reason, until recent years, most of the car sharing systems provided 

only round-trip service. Metropolitan bike sharing systems, however, are typically deployed as one-

way systems since physical redistribution of bicycles can be carried out more easily 

Although physical redistribution would be done quite differently, there are many similarities 

between bike sharing systems and one-way car sharing systems. In particular, the mechanism that we 

propose in this study can be implemented in both types of systems in a similar manner and therefore 

in the sequel we refer to both as simply vehicle sharing systems. A comparison between the two with 

respect to systems characteristics and factors affected (transport, social-environment and personal) 

can be found in Efthymiou et al. (2013).         

The main challenge faced by one-way vehicle sharing system operators is to satisfy demands for 

vehicles (upon rental) and for vacant parking spaces (upon return). The demands are typically 

stochastic, non-stationary and asymmetric processes. Occasionally, users may find that some stations 

are empty (no available vehicles) and some are full (no available parking spaces). If a vehicle is not 

available at the desired origin of the journey, the user may either abandon the system, possibly use 

other means of transportation, or she may look for an available vehicle in a neighboring station. If, on 

the other hand, a parking space is not available at the destination, the user is obliged to find a station 

with available space in order to return the vehicle to the system. Typically, the system performance is 

measured as a function of these two types of undesired situations. We note that although users can 

check online the availability of vehicles and parking spaces, this does not guarantee that their requests 

would be satisfied, because by the time the user arrives at her destination, the space might be already 

occupied.      

Two main approaches can be taken to reduce the occurrences of such situations: adding more 

resources to the system or redirecting demands. Adding more resources may include setting up more 

stations, enlarging the station capacities and adding more vehicles to the system. The following 

studies focus on related strategic planning aspects of vehicle sharing systems such as the location of 

stations and the number of vehicles to be dispersed in the system: Lin and Yang (2011),  

Lin et al. (2011) and Correia et al. (2012) take a deterministic centralized approach, as often done in 

studies of traditional logistics networks (see, for example, Shu et al. 2005), while George and Xia 

(2011) and Shu et al. (2013) formulate stochastic models and assume users are strategic, i.e. a 

decentralized approach (similar to the approach we take in this paper). In addition, some operators 
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actively redistribute the vehicles in the system by moving vehicles between stations. This mode of 

operation is referred to in the literature as repositioning (or redistribution), and is further classified 

into static repositioning and dynamic repositioning. Static repositioning operations are carried out 

during off-peak periods when demands are negligible (at night) in order to prepare for the demands of 

the following day, see Kek et al. (2009), Nair and Miller Hooks (2011), Benchimol et al. (2011), 

Chemla et al. (2012), Raviv et al. (2013), Angeloudis et al. (2012), Forma et al. (2013) and Erdoğan et 

al. (2012). Methods for calculating the inventory target levels at the beginning of the day are proposed 

by Raviv and Kolka (2013) and Schuijbroek et al. (2013). In most systems, repositioning operations 

are carried out also during peak periods, while bicycles are on the move. Such operations are referred 

to as dynamic repositioning, see Contardo et al. (2012) and Pessach et al. (2012). Note that 

repositioning is merely another way of adding resources (workforce and redistribution trucks) in order 

to meet the demand; this approach is not in the scope of this study.  

Redirecting demands may be accomplished, for example, by introducing incentives to users, see 

Fricker and Gast (2013), Waserhole and Jost (2012) and Di Febbraro et al. (2012), or by establishing 

system regulations such as reservations, which is the approach considered in this paper. Both 

incentives and regulations may be seen as means of passively redistributing vehicles in the system.  

Reservations are often used to coordinate supply-and-demand mismatches in various systems. 

They provide a control over the flow of demands and, in addition, allow a better forecast of the 

system’s future state. Due to their ability to smooth demand peaks and reduce uncertainty, this 

mechanism is widely used by many service providers such as hotels, restaurants, airline companies, 

healthcare facilities, etc.  

 In this study, we focus on the reservations of parking spaces at the destinations. We consider the 

following policy: when a user rents a vehicle, she declares her destination station and a vacant parking 

space in that station is reserved for her, if one is available. That is, the reserved vacant parking space 

at the destination becomes unavailable for other users from the moment the reservation is made, until 

the user reaches her destination.  This assures that when she reaches her destination, she will be able 

to return her vehicle. If there is no available parking space at the destination, the transaction is denied, 

so that the user is unable to rent the vehicle. We refer to this policy as the Complete-Parking-

Reservation (CPR) policy. It is complete in the sense that all users are obliged to reserve their parking 

space. By implementing this parking reservation policy, the system can secure an ideal ride for some 

users. On the other hand, it holds parking spaces without utilizing them for a certain amount of time, 

and by doing so, possibly rejecting other potential users. Due to this tradeoff, the effectiveness of 

using reservations is not obvious. 

Technologically, the implementation of parking reservations requires mainly software updates, 

which need to be adjusted to include the above-mentioned renting process, and then present only 

empty and non-reserved parking spaces as available. As for the hardware, specific vehicle 

identification is already in place in some existing systems, therefore returning a vehicle to a reserved 
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parking space may be allowed by the system only    if the vehicle is identified as the one for which the 

reservation was made. In some systems (mainly bike-sharing), different light colors are used to signal 

whether a parking space (locker) is operative or out of order. An additional color can be used to signal 

that a certain parking space is reserved. 

The contribution of this study is as follows: for the first time, we study a parking reservation 

policy in one-way vehicle sharing systems and compare its performance to a base policy, entitled No-

Reservation (NR) policy. We propose measuring the performance of the system by the total excess 

time users spend in the system due to unfulfilled renting requests or delays in returning the vehicles, 

where the excess time of a user is the difference between her actual and ideal (shortest) travel time. 

We show that implementing parking reservations as suggested in this study will improve the 

performance of one-way vehicle sharing systems in most realistic systems. In particular, using 

Markovian models, we prove our main theoretic result, stating that if the demand faced by the system 

is not extremely high, the CPR policy outperforms the NR policy. In other words, under the CPR 

policy users will spend less excess time in the system. We further demonstrate through a small 

example that in some cases the CPR is superior for any demand rate. Finally, the main theoretic result 

is reinforced by a numerical study based on a discrete event simulation of a real-world vehicle sharing 

system with an enhanced user behavior model. The bike sharing system in Tel-Aviv, Tel-O-Fun, was 

used as our case study. The behavior model assumes users are strategic, i.e., in case of an unfulfilled 

renting request or unavailability of a parking space, the user determines her alternative route so as to 

minimize the expected time she spends in the system. Through this numerical study, we also 

demonstrate that the CPR policy outperforms the NR policy under several additional performance 

measures. 

The structure of this paper is as follows. In Section 2 we discuss service oriented performance 

measures used in vehicle sharing systems and in public transportation in general. In Section 3, a 

Markovian model of a vehicle sharing system is described. In Section 4, the NR and CPR policies are 

compared analytically and numerically. A simulation model of a vehicle sharing system is presented 

in Section 5. Using the model, the superiority of the CPR policy is demonstrated using data from a 

real world system. In Section 6, concluding remarks and some directions for future research are given.   

2. Performance measures 

Most of the one-way vehicle sharing systems are service oriented; accordingly, these systems are 

typically measured by the quality of service given to the users. The most common measure used in 

practice is based on the percentage of time in which stations are empty or full. Specifically, it is 

obtained by averaging these percentage values over all stations. We refer to this measure as station-

availability. Since the vehicle inventory levels in the stations are updated on-line in the information 

systems, it is quite easy for the operators or other interested parties to monitor this performance 

measure. This measure has also been at the focus of some previous research studies. However, we 
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claim that this measure is a biased reflection of the quality of service because the state of the stations 

should be weighted by their demand rates. For example, the adverse effect of an empty station that 

faces a low rate of demand for rentals is smaller compared with an empty station that faces a higher 

rate. Moreover, due to changes in demand rates along the day, it may even be desirable for certain 

stations to be full at certain times, and for other stations, to be empty. For example, during the 

mornings, many systems experience high demand for journeys from residential areas to business 

areas. Thus, in these hours it may be beneficial to fill up stations in residential areas and to empty 

stations in business areas. Other considerations that should be taken into account in a performance 

measure are the length of the trip, which may affect the inconvenience caused to a user due to an 

unfulfilled request, the time of the day, the proximity to other stations, available alternative modes of 

transportation, etc.   

In contrast to the station-availability performance measure, it is common in studies of other 

public transportation systems to represent the service level by the total time users spend in the system. 

See, for example, road selection (Campbell 1992), buses and trams (Borndörfer et al. 2007), and 

passenger trains (Schöbel and Scholl 2006). A related measure to the total time is the total excess time 

users spend in the system. As presented in the Introduction, the excess time of a user is the difference 

between her actual and her ideal (shortest) travel time, see Ceder and Wilson (1986). In this study, we 

suggest using the total excess times of all users as the performance measure in a vehicle sharing 

system. The excess time is caused to a user due to an unfulfilled renting request or delays in returning 

the vehicle. We use this measure to evaluate and compare our suggested reservation policy to the 

current practice of one-way vehicle sharing systems, in which parking space reservation is not 

implemented. Note that focusing on the total excess time allows us to remove from the analysis a 

fixed constant that in any case cannot be reduced, that is, the total ideal time.  

Currently, information systems of vehicle sharing systems log the actual journey times and 

itinerary, i.e., origins, destinations and journey durations. The true preferences of the users are 

unknown and there are also no records about abandonments. Based on this information, it is 

impossible to calculate the excess time of the users. 

However, the information needed to calculate the excess time can be quite easily obtained. For 

example, by incorporating reservation policies, the true destinations of the users would be revealed. In 

addition, operators can encourage users to declare their requested origin and destination and to report 

if they decide to abandon, in order to improve their own (possibly future) service. Technically, this 

would be done using smartphone apps or station information kiosks.  

We view the excess time as a better performance than the one currently used (station-

availability), therefore in this paper we focus on this measure. However, to make the case for parking 

space reservation stronger, we compare (in Section 5) the CPR policy with the NR policy using both 

measures. Our simulation study demonstrates the advantage of the CPR with respect to both of these 

measures.   
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3. A vehicle sharing system model 

In this section, the vehicle sharing system is modeled as a continuous time Markov chain, see for 

example Ross (2009). This is a simplistic model created in order to derive some general insights into 

the performance of the system under the NR (No-Reservation) and CPR (Complete-Parking-

Reservation) policies. These insights are verified using actual data and a detailed simulation model in 

Section 5. 

We use the following general notation to describe the vehicle sharing system configuration: 

  The number of stations in the system 

   The number of parking spaces in station   (station capacity)  

  The number of vehicles dispersed in the system 

       The expected travel time between any two stations     of users who depart at time period    

       The arrival rate of users who wish to travel from station   to station   at time period   

The travel times reflect structural characteristics of the system, such as the distance between the 

stations, traffic density within the different segments, the topography of the city, and so on. Note that 

in general,              . For example, it is clear that riding a bicycle downhill is much faster than 

riding uphill. The expected travel times represent the duration of journeys that users actually make, 

which may not necessarily be the shortest possible. For example,         , that is, roundtrip 

journeys are possible. As for the users, the demand for journeys between each pair of stations is given 

as a stochastic process. Furthermore, user behavioral rules are set in order to define how users react to 

shortages in either vehicles or parking spaces. Finally, this model is service oriented; the performance 

of the system is measured by the total excess time spent by users due to shortages of vehicles or 

parking spaces.  

3.1. The NR policy 

In this section, we model the system under the NR policy and Markovian assumptions. The arrival of 

renters to the system follows a Poisson process, and the travel time of journeys is exponentially 

distributed. For the sake of simplicity, the distributions are set to be homogenous in time. Therefore, 

we denote             and            for all  . Finally, to be able to assume a steady state, 

repositioning operations are not included in the model. 

The following user behavior is assumed: (1) a user that faces a shortage of vehicles will abandon 

the system immediately. That is, she will choose an alternative mode of transportation and therefore 

will spend excess time on her journey. (2) A user that faces a shortage of vacant parking spaces will 

wait at the destination until a parking space becomes available, as a result of an arrival of a renter. 

Namely, the user will enter a waiting queue and will spend excess time waiting for her turn to return 

her vehicle. This assumption is made in order to simplify the Markovian model. In Section 5.1 the 

user behavior is extended so that roaming between stations is allowed.   
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The excess time due to abandoning is modeled as proportional to the travel time. Specifically, the 

excess time of an abandoning user who wishes to travel from station   to   is denoted by        where 

    is the penalty ratio. 

Given the assumptions above, the state of the system is described by the following vector: 

                                 

                           

where     denotes the number of vehicles in stations   and     denotes the number of vehicles 

traveling from station   to station  . In particular, if        then all the parking spaces in station   are 

occupied and there are        users waiting in station   for parking spaces to become available. 

Furthermore, a possible state satisfies the following: 

 

∑∑     

 

   

 

   

 (1) 

Note that any given vehicle can be either at one of the   stations or traveling between one of the    

pairs of stations. In addition, there can be up to   vehicles in any given station or traveling between 

the same given pair of stations. We denote the set of all possible states by  . Recall that the number of 

parking spaces in a station is not binding because the formation of queues is possible. Therefore, the 

number of states is the number of ways to place   identical vehicles in        "bins". Hence, the 

number of possible states in the system is (
           

         
) (Since the number of possible ways 

to distribute   identical items into   bins is (
     

   
)). 

A transition between the system states occurs either when a vehicle is rented or when a user 

arrives at her destination. A rent transition between two possible states      is denoted by the 

following indicator function: 

          {
        (                                     ) 

                                                                                                             
 

where   is the origin station and   is the destination station. A return transition between two possible 

states      is denoted by the following indicator function: 

          {
        (                                     ) 

                                                                                                              
 

where   is the station in which the vehicle was rented and   is the destination station. 

The transition rates between any two possible states  ,    are given by: 

 ∑            

   

 ∑
   

   
         

   

  
(2) 

Note that while the arrival rates of users do not depend on the number of vehicles in the station, the 

returning rates are linear functions of the number of traveling vehicles.  
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As discussed in Section 2, we measure the performance of the system by the total excess time 

users spend in the system. According to our model this is due to waiting at queues for a vacant 

parking space or due to abandoning the system and use of alternative mode of transportation. In the 

analysis of the Markovian models, we focus on the total excess time added per time period in steady 

state, referred to as the expected excess time rate.  

We denote the total number of users waiting to return a vehicle in state   by     , where: 

     ∑          

        

 

The expected number of users waiting to return a vehicle in steady state is given in Equation (3): 

 ∑         

   

 (3) 

where      is the limiting probability of state  . Note that the expected number of users waiting to 

return a vehicle is equivalent to the expected excess time rate due to waiting in queues. This is 

because for every time period a user waits in a queue, one period of excess time is accumulated. The 

steady state excess time rate due to abandonments in state   is given by: 

 

∑ ∑         

 

          

 (4) 

In the internal sum of (4), the excess time rate due to abandonments is calculated for each empty 

station  , and the external sum goes over all empty stations. For the entire system, the expected excess 

time rate due to abandonments is obtained by summing (4) over all states, multiplied by their 

respective limiting probabilities, and is given by: 

 

∑ ∑ ∑              

 

             

 (5) 

In conclusion, the expected excess time rate is obtained by summing (3) and (5).  

It may be argued that when abandoning the system the quality of service is adversely affected not 

only by the travel time using an alternative mode of transportation but also by the mere fact that the 

user has to seek such an alternative service. For example, if an alternative mode of transportation is a 

bus, the user has to wait for it to arrive and to pay for a ticket. The waiting time and the cost of the 

ticket are typically unrelated to the travel time. Hence, the penalty incurred by the system for each 

passenger who uses a different mode of transportation may consist of a fixed component, in addition 

to the variable component which is proportional to the travel time. The fixed component should be 

expressed in units that are equivalent to travel time. The models presented in this section neglect this 

fixed component, but we revisit this issue and justify our simplifying assumption in Section ‎5.3, 

where we analyze a real world system using discrete event simulation. 
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3.2. The CPR policy 

We now specify how the Markov chain for the NR policy is adapted to the CPR policy. Recall that a 

user will rent a vehicle only if there is one available in her origin station and there is an available 

parking space at the destination, namely, empty and non-reserved parking. Therefore, the total number 

of vehicles that travel to station   or are parked at station   cannot exceed the number of parking 

spaces in the station. In addition to (1), a state in a system managed by a CPR policy satisfies: 

 

∑      

 

   

         (6) 

We denote the set of all possible states in the CPR policy by  ̃and note that  ̃   , that is, the set 

of possible states in the CPR policy is a subset of the NR set. In particular,  ̃ only includes states that 

satisfy (6). Since the formation of queues is impossible, excess time under this policy is only due to 

abandoning. The expected excess time rate due to abandoning when in state   is given by: 

 

∑          

            ⋁∑       
 
   

  

For the entire system, the expected excess time rate due to abandoning is given by: 

 

∑ ∑  ̃            

            ⋁∑       
 
   

   ̃

 (7) 

where  ̃    is the limiting probability of state  . 

 

4. Comparison between the CPR and NR policies 

In this section the vehicle sharing system under the Markovian assumptions and the user behavior 

assumptions described above is referred to as the M-VSS model (Markovian - Vehicle Sharing 

System). In Section ‎4.1 we define the notion of offered load in the context of the M-VSS model, and 

demonstrate that the expected excess time rate is a function of it. In Section 4.2, using the M-VSS 

model, we compare the CPR and NR policies under a range of offered loads. The comparison is 

illustrated through a small example in Section ‎4.3.   

4.1. Offered load 

The following definitions refer to the ideal situation in which all requested origin-destination journeys 

are satisfied. Denote   as the expected travel time per arriving user, specifically:  

 
  

∑ ∑       
 
   

 
   

∑ ∑    
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In the same manner, let   denote the average arrival rate at a station, which can be written as: 

 
  

∑ ∑    
 
   

 
   

 
  

A user who rents a vehicle at station   and travels to station   will use the vehicle for an expected     

time units. That is, the expected work added to the system by this user is     time units of vehicle 

usage. We define the offered load as the expected work to be added to an average station per time unit 

if all demands could be satisfied. The offered load is the product of   and  :  

 
   

∑ ∑       
 
   

 
   

 
  

Note that     represents the offered load in the entire system. That is, the total travel time added to 

the entire system per time unit. In other words, it represents the expected number of vehicles that 

would be in use at any given moment if the system could meet all the demand. 

In the following section, we will measure the performance of the system under various loads by 

varying the values of   and  . In order to facilitate a fair comparison, the relations between the 

stations are kept fixed. This is done by noting that all travel times     can be written as the proportion 

    of the expected travel time  , that is                and similarly, all arrival rates     can be 

written as the proportion     of the expected arrival rate, that is         . Then, when   is changed, 

all travel times are adjusted proportionally and similarly when   is changed, the arrival rates at all 

stations are adjusted proportionally. In other words, while   and   may be altered, the proportions     

     and          are kept fixed.  

Lemma 1: For the M-VSS model, when     and     are fixed, the limiting probabilities are functions 

of the offered load   .  

Proof: the coefficients in the steady state equations are generally in the form prescribed in (2), that is, 

either proportional to   or to 
 

 
. By multiplying all equations by   an equivalent system of equations is 

received where all the coefficients are either proportional to    or constant. This set of equations is 

given in (8).  

 

   ∑ ∑                

   

 

      

∑ ∑
   

   
             

       

    ∑ ∑             
    

   

 

      

∑ ∑
   

 

   
          

    

       

         

(8) 

In addition, the coefficients in (9) are all constants. 

 

∑     

   

   (9) 
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The limiting probabilities are the solution of a system of equations where all coefficients are either 

proportional to    or constant. Hence, the limiting probabilities are functions of the two parameters (  

and  ) only through their product, regardless of their separate values.   

Lemma 2:  For the M-VSS model, when     and     are fixed, the expected excess time rate can be 

stated as a function of   .  

Proof:  this is straightforward from (3), (5) and Lemma 1. 

Consequently, the expected excess time rate is sensitive to changes in the offered load, rather than to 

changes in the expected travel time per user and the expected arrival rate separately. For instance, if 

we double the expected arrival rate,      , and divide the expected traveling time by two,    
 

 
, 

the excess time rate will not change. 

4.2. Conditions for dominance of the CPR policy 

In this section we compare the performance of the M-VSS model under NR and CPR policies over a 

range of offered loads. In particular, our focus is on the range            . The upper bound is 

received through the following observation: there can be at most   vehicles in use at any given 

moment. The expected offered load in the entire system is given by    . Hence       represents 

the 100% utilization of the system. This bound is equivalent to the     bound in classic queueing 

systems. In the long run, it is safe to assume that the system will adapt itself to this range. In the case 

of higher loads, either the system will need to be further developed or the rate of user arrivals will 

drop due to constant lack of service. We note that in an unlikely case where       {  }, users will 

always be able to return their vehicles in any station, that is, the system will perform the same under 

both policies. Since in practice the number of vehicles is much larger than the capacity of any station, 

we assume that       {  }. 

We begin with the extreme case of     , namely the case when the expected travel time is 

negligible. 

Lemma 3: For the M-VSS model, when       the expected excess time rate due to abandoning is 

zero under both policies.  

Proof:  To see this we rewrite Equations (5) and (7) as (10) and (11), respectively: 

 

  ∑     ∑ ∑         

 

   

 

          

 (10) 

 

  ∑  ̃   ∑          

            ⋁∑       
 
   

   ̃

 (11) 

Since the expressions in the internal sums are fixed and the sum of limiting probabilities is bound 

from above by 1, both sums equal zero when the offered load is zero. 

It remains to examine the excess time rate due to queueing in the NR policy. 
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Lemma 4: For the M-VSS model, in the NR policy, when     , the expected excess time rate due 

to queueing is a positive constant, independent of   and  . 

Proof:  See Appendix A.   

In conclusion, when   =0, the excess time in the CPR policy tends to zero while in the NR policy it 

tends to a positive value. Therefore, when     is zero, the CPR policy is preferable. It turns out that 

there is a discontinuity point at     since clearly there is no excess time when no customers arrive 

at the system. We are now ready to state an important result. 

Theorem 1: For the M-VSS model, there exists some     for which the CPR policy delivers 

smaller excess time (better service) compared to the NR policy under any workload that satisfies 

    . 

Proof: Both excess time rate expressions are continuous functions of    (both are sums of continuous 

functions). By Lemma 3 and Lemma 4, when      the CPR policy is preferable. If the functions 

intersect, the first intersection point   defines a range       in which the CPR policy is preferable. 

Otherwise, the CPR policy is preferable for any   .   

4.3. An illustrative example 

Theorem 1 presented above is general in the sense that no limitations were imposed on the number of 

stations in the system or their capacities. To demonstrate this result, we use a small system, 

configured as follows: the system is comprised of two stations (   ). The capacity of both stations 

is        , the number of vehicles in the system is V=3. The expected travel time between the 

two stations is identical in both directions,          . The arrival rates of renters at the two 

stations are denoted by     and    . For the sake of simplicity there is no demand for round-trip 

journeys, that is          . This allows us to reduce the state representation 

to                    . Recall that     represents the number of vehicles in station   and     

represents the number of vehicles traveling from station   to station  . For example, the state         

indicates that two vehicles are parked in station 1, no bicycle is travelling to station 1, there are no 

vehicles parked in station 2 and one vehicle is travelling to station 2. Finally, the excess time due to 

abandonment is    (          . In Figure 1 we depict the resulting Markov chains for the NR 

and CPR policies. The entire figure represents the NR policy chain and the sub-graph which consists 

of solid arcs and nodes represents the CPR policy chain. Notice that even for a small and simple 

system, the resulting Markov chains are quite intricate. 
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Figure 1: Graph representation of the Markov chains for the NR and CPR polices of the illustrative 

example  

The limiting probabilities of the two Markov chains were calculated by solving the system of 

equations given by (8) and (9). The expected excess time rate for each policy was calculated 

according to (3), (5) and (7). We compare the two policies by subtracting the excess time rate of the 

CPR policy from the excess time rate of the NR policy. The function that describes this difference, as 

a function of the offered load   , is termed the difference function. A positive difference means that 

the CPR policy performs better and a negative value means that the NR policy performs better for the 

corresponding offered load. From Theorem 1 we know that there exists     such that for all 

         the difference function is positive. 

In Figure 2 we present six difference function graphs for various settings. In the top graphs we 

set demand rates in both stations to be the same, that is          . In the bottom graphs the total 

demand rate is kept constant but demands are unequal with                   . Namely, the 

demand rate from station 2 to station 1 is three times the demand rate in the opposite direction. Recall 

that   is the penalty ratio in the case of abandonment. We set the penalty ratio to three different 

levels,           , as presented in the left, middle and right graphs, respectively. To illustrate the 

range of   values that are likely to be used, we note, for example, that in a bike sharing system, an 

abandoning user will probably walk to her destination. Assuming that the walking time is twice the 

riding time, the excess time due to abandoning is equal to the riding time, i.e.    . Notice that only 

in the upper right graph, Figure 2(e), the curve intersects the axis, that is, there exists a range of 

offered loads in which the NR policy is preferable. This graph describes a case where the demands are 

balanced and the penalty for abandonment is extremely high.  
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Figure 2: Difference function for symmetric and asymmetric demands and for various abandonment 

penalty ratios   

In order to examine the effect of imbalanced demand on the difference function, we analyze the 

above system by assigning       ,           ,        , and study the resulting difference 

function over  . Indeed, the results show that for any  , there exists a unique minimum point of the 

difference function at    , which corresponds to the case        . Therefore, in this small 

example, the worst performance of the CPR policy compared to the NR policy is when the system is 

completely symmetric in terms of travel times and arrival rates. Note that in this case, rebalancing is 

least needed. 

Recall that the bound for the system’s offered loads is      . In this example,         

and so        represents 100% utilization. To further study the range in which the CPR policy is 

preferable over NR, we present in (12) and (13) the resulting excess time rate functions when 

         , for the NR and CPR policies, respectively. The resulting expressions are relatively 

compact compared to the general expressions. Here, it is easy to see that both are functions of the 

offered load   . The difference function is given in (14).  

NR 

Policy: 

                               

                   
 (12) 

CPR 

Policy: 

                                  

                               
 (13) 

                                                                                 

                                                            
 (14) 

One can see that when the penalty parameter is in the range        , (14) is positive for any   , 

that is, the CPR policy is always preferable. Recall that for bike-sharing systems a reasonable value of 

  is 1. Also, for        , (14) is positive for any  , that is, the CPR policy performs better than 

NR, no matter how high the penalty for abandoning is. For large   values, the excess time due to 

waiting in a queue is likely to be smaller than the excess time when abandoning due to the inability to 
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make a reservation. Therefore as   increases the range in which the CPR policy is preferable, 

narrows. Note that when the offered load is extremely high, the difference function converges to a 

constant, which means that the difference between the policies in terms of excess time per user is 

negligible. Indeed, if the offered load is extremely high, all vehicles will be constantly traveling, that 

is, in both policies most users will abandon due to shortage of vehicles, and therefore the system will 

perform the same under both policies.  

Recall that the excess time rate function of the NR policy is composed of two components, the 

excess time rate due to abandoning and the excess time rate due to waiting. Next, we examine the 

tradeoff between the two components and compare them to the excess time rate function of the CPR 

policy, which is due to abandoning only. In Figure 3 we further examine the case where in the 

illustrative example, the demand rates in both directions are identical (           ) and the 

penalty ratio is set to    . We present the functions of the two components of the NR policy and 

their sum in black dotted, dashed and solid lines, respectively, and the excess time rate function of the 

CPR policy in a solid gray line. As the offered load increases, the excess time due to waiting 

decreases while the excess time due to abandoning increases. For this instance, the CPR policy is 

superior (lower excess time) over the entire examined range of offered loads. While for low loads the 

dominance is mainly due to the waiting times, for higher loads (       , the excess time due to 

abandoning in the NR policy is higher by itself than in the CPR policy. This means that for relatively 

high loads, fewer users will abandon under the CPR policy.  

 

Figure 3: Excess time rate functions: NR policy (abandoning, waiting and total) and CPR policy  

 



17 
 

5. Simulation model 

To further examine the effectiveness of the CPR policy, real world systems should be examined. 

Unfortunately, it is intractable to evaluate the excess time rate function for large size vehicle sharing 

systems. Moreover, in the Markovian models, a simple user behavior was assumed and the demand 

process was assumed to be homogenous throughout the day. Both assumptions do not fit real systems. 

In order to better model the complexities of real vehicle sharing systems we use discrete event 

simulation in which we relax the homogenousity assumption and present extensions made to the user 

behavior model. In Section 5.2 we describe a real-world bike sharing system that was used as a case 

study. For a clearer presentation we use throughout this section bike-sharing terminology. 

Specifically, parking spaces are referred to as lockers and the vehicles are simply bicycles. The 

alternative mode of transportation selected by the users is assumed to be walking. 

5.1. Enhancing the user behavior model  

The movement of users within the bike-sharing system is a complicated process. In particular, users 

may react in different ways to shortages of bicycles or lockers. Each reaction may project on a 

different group of users in the system. We assume that the users are strategic and that they make use 

of information available in the stations’ kiosks or accessed by their smartphones through the internet. 

Specifically, users have full knowledge of the travel times between each pair of stations, arrival rates 

of renters and real-time inventory levels. Each user is interested in reaching her destination in the 

shortest time. At decision points, due to an unfulfilled demand, we assume that the users choose the 

alternative that minimizes the expected remaining time in the system. The users are myopic, in the 

sense that they do not take into account the implications of possible changes in the inventory levels of 

intermediate stations during their journey.  

The behavior models under the NR and the CPR policies are described in Figure 4(a) and 4(b), 

respectively. In Table 2 we further elaborate on the user decision processes, presenting the exact 

calculation made by a user at a decision point. Three types of decision points exist, denoted in  

Figure 4 and in Table 2 by I, II and III. 
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Figure 4: User behavior models in the NR and CPR policies 

Under the NR policy, a user that does not find an available bicycle may choose to roam to a 

nearby station or walk directly to her destination (I). When a bicycle is rented the user rides to her 

destination. If upon arrival at the destination she finds an available locker, she returns the bicycle 

there and leaves the system. Otherwise, the user may either enter a waiting queue in that station or 

ride to a nearby station (II). If the bicycle is not returned at the destination, the user walks from the 

returning station to the destination.  

Under the CPR policy, a user that does not find an available bicycle may choose to roam to a 

nearby station or walk directly to her destination (I). When a bicycle is available, if the user is unable 

to reserve a locker at her desired destination, she may choose either to reserve a locker in a station 

near her destination or to waive the service of the system altogether and walk directly to her 

destination (III). Again, if the bicycle is not returned at the originally desired destination, the user 

walks from the actual returning station to the desired destination. The main difference from the NR 

policy is that once a bicycle is rented, the returning is ensured. 
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We use the following notation to describe the user decision processes in Table 2:  

    Expected riding time from station   to station   (as defined in Section 3) 

      Arrival rate of renters to station   at decision time   (      ∑    
 
      ) 

    Expected walking time from station   to station    (                          )  

   Queue length in station   at the decision time 

   Number of bicycles in station   at the decision time 

   Number of available lockers (not occupied and not reserved) in station   at the decision time 

We assume that the riding times       and walking times (   ) do not change along the day. For simplicity, we 

omit the index   from the state variables         .   

Table 1: Decision processes of users who face shortages of bicycles or lockers 

Situation Question Decision Process 

User with destination   arrives at 

station   in which there are no 

available bicycles 

(NR, CPR) 

Roam to a nearby 

station? (I) 

Set                (         ) 

If                   

roam to station    (Yes) 

Else, walk to   (No) 

User with destination   arrives with 

a bicycle to station  , in which there 

are no vacant lockers (possibly 

   ) 

(NR) 

Wait for a vacant 

locker? (II) 

Set                (         ) 

If                                   

wait in station   (Yes) 

Else, ride to station    (No) 

User finds an available bicycle at 

station   but cannot make a 

reservation at her destination   

(CPR) 

Vacant locker in 

station near 

destination? (III) 

 

Set                (         ) 

If                   

reserve a locker and ride to station   , from there 

walk to   (Yes) 

Else, walk to   (No)  

The total time a user spends in the system is taken as the difference between the time the user 

reaches her destination and her arrival time to the system. The excess time is obtained by subtracting 

the ideal time, the net riding time from the desired origin to the desired destination. We refer to the net 

riding time as the ideal time because this is the time the user spends in the system if she does not 

experience shortage of bicycles or lockers, the ideal situation.   

5.2. A real world system 

As a case study we take the bike sharing system in Tel-Aviv, Tel-O-Fun, with 130 stations scattered 

in an area of about 50 square kilometers. A total of 2,500 lockers and 900 bicycles are dispersed in the 

system. Weekday rent transactions were collected over two months. Daily demand patterns did not 

change significantly throughout this period. The average number of daily trips was about 4,200.          

By aggregating the transactions, we estimated the arrival rate of renters during 30 minute periods 

throughout the day. As may be expected, in most stations the demand process was not homogenous 



20 
 

over time. For example, the demand for bicycles in stations located near working areas was low at the 

beginning of the day and increased significantly towards the end of the working day. 

Riding times were estimated using the Google Maps API. For regular trips, it is safe to assume 

that most users ride directly from the origin to the destination. Indeed, the average time of all 

transactions was about 12 minutes. This is not the case for round-trips, where the average duration 

was approximately 30 minutes. Such trips were about 8% of all rent transactions. The penalty for an 

abandoning user was set to    , assuming that walking time is twice the riding time. 

We note that in its current state, the information system of Tel-O-Fun cannot document 

information regarding abandonments. This is mainly due to the fact that when a user arrives at an 

empty station, she does not attempt to rent a bicycle and therefore is not identified by the system. 

Moreover, the system cannot tell apart users who returned bicycles at their desired destination and 

those who had to roam to a nearby station. To deal with this issue, we estimated the proportion of time 

a station was empty or full and inflated the demand rates accordingly.  

5.3. Numerical results 

The discrete event simulation, together with the user behavior model logic was coded in MathWorks 

Matlab™. The average daily bicycle usage (the total rent durations), was about 920 hours. In a system 

with 900 bicycles there are 21,600 available bicycle hours a day. That is, the average daily utilization 

was 4.2%. In addition, the average utilization at peak hours was 8.3%.  

In order to test the capabilities of the system under various offered loads, we multiplied the 

measured offered load by the following factors: 0.5,1,2,4,8. This was done by multiplying uniformly 

all arrival rates by these factors (load multipliers). In addition, we used two starting points for the 

initial inventory level of bicycles at the beginning of the working day: (1) the actual initial station 

inventories on a randomly chosen day, after the operators executed repositioning activities. (2) the 

inventory levels prescribed by the method of Raviv and Kolka (2013).  

For each load factor, we randomly generated 50 daily demand realizations, including renters’ 

arrival times to each station and their destinations. In order to reduce variation, we used the same 

realizations for each combination of policy and initial inventory (Common random numbers). 

The simulation results are presented in Table 2 and Table 3 for the two starting inventory levels. 

In the first column we present the load multiplier and in the second we present the policy that was 

used. In the third and fifth columns we present the average total time spent by users in the system, 

over 50 replications, and the total ideal time, respectively. The absolute and relative excess times in 

each configuration are reported in the sixth and seventh columns, respectively. In the fourth and 

eighth columns we present, respectively, the relative reduction of the total time and of the excess time 

in the CPR policy as compared to the NR policy. In the ninth and tenth columns we present the 

percentage of users who received an ideal ride and the percentage of users who did not rent a bicycle 

at all, respectively.  



21 
 

Table 2: Simulation results for various system loads with initial inventory taken from actual random day 

Initial Inventory – Actual day 

Load 

Multiplier 
Policy 

Total 

Time In 

System 

(hr./day) 

% Total 

Time In 

System 

Reduced 

Total Ideal 

Time 

(hr./day) 

Absolute 

Excess 

Time 

(hr./day) 

%Excess 

% 

Excess 

Reduced 

Ideal 

Rides 
Unserved 

Fixed 

Penalty 

(min.) 

0.5 
NR 492.40 

39.0% 459.29 
33.11 7.21% 

13.89% 
86.23% 2.72% 

45.98 
CPR 487.80 28.51 6.21% 86.43% 3.00% 

1 
NR 1,009.76 

3900% 919.87 
89.90 9.77% 

14.99% 
82.36% 3.84% 

52.45 
CPR 996.28 76.42 8.31% 82.78% 4.21% 

2 
NR 2,108.86 

89.2% 1,831.42 
277.44 15.15% 

19.62% 
75.45% 6.28% 

477.53 
CPR 2,054.43 223.01 12.18% 77.18% 6.36% 

4 
NR 4,554.72 

09.3% 3,675.82 
878.90 23.91% 

20.27% 
65.11% 11.68% 

∞ 
CPR 4,376.54 700.71 19.06% 68.83% 10.58% 

8 
NR 10,172.35 

4.39% 7,335.99 
2,836.37 38.66% 

15.74% 
51.83% 22.72% 

∞ 
CPR 9,725.77 2,389.79 32.58% 55.93% 19.82% 

Table 3: Simulation results for various system loads with initial inventory calculated according to the 

method of Raviv and Kolka (2013) 

Initial Inventory – Raviv and Kolka (2013) 

Load 

Multiplier 
Policy 

Total 

Time In 

System 

(hr./day) 

% Total 

Time In 

System 

Reduced 

Total Ideal 

Time 

(hr./day) 

Absolute 

Excess 

Time 

(hr./day) 

%Excess 

% 

Excess 

Reduced 

Ideal 

Rides 
Unserved 

Fixed 

Penalty 

(min.) 

0.5 
NR 477.20 

1.26% 459.29 
17.91 3.90% 

33.56% 
93.00% 0.49% 

28.22 
CPR 471.19 11.90 2.59% 92.79% 1.11% 

1 
NR 979.91 

1.93% 919.87 
60.05 6.53% 

31.46% 
88.69% 1.39% 

36.58 
CPR 961.02 41.16 4.47% 88.92% 2.13% 

2 
NR 2055.57 

3.73% 1,831.42 
224.16 12.24% 

34.18% 
80.51% 3.31% 

78.04 
CPR 1978.96 147.54 8.06% 82.42% 4.02% 

4 
NR 4383.17 

5.05% 3,675.82 
707.35 19.24% 

31.30% 
71.19% 6.98% 

559.14 
CPR 4161.77 485.95 13.22% 75.00% 6.92% 

8 
NR 9586.93 

7.26% 7,335.99 
2250.94 30.68% 

30.93% 
59.03% 15.09% 

∞ 
CPR 8890.63 1554.65 21.19% 65.89% 11.75% 

 

It can be observed in both tables that for all the tested values of offered loads, the CPR policy 

outperformed the NR policy in terms of the total excess time (hence also in terms of total time in the 

system) and in terms of the percentage of ideal rides. This is accompanied by a slight decrease in the 

percentage of served users in low load configurations (0.5,1) and a significant increase in the 

percentage of served users in high load configurations (8). That is, the operator can achieve a 

significant improvement in the quality of service at a small loss of rent revenue when the offered load 

is relatively low, and even increase revenue when the offered load is high. Note that unserved users 

that are not able to make a reservation under the CPR policy, are likely to spend significant excess 

time looking for a vacant locker had the system allowed them to rent a bicycle. In the long run, better 
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service is essential to retaining users and attracting new ones and hence both the users and the 

operator are likely to benefit from the CPR policy. 

Next, we evaluate how the addition of a fixed penalty component per abandoning user (see 

discussion at the end of Section ‎3.1) affects the superiority of the CPR policy. To this end we 

calculate, for every configuration, the value of the fixed penalty for which the two policies breakeven. 

These values are presented in the last column of Table 2 and Table 3. The lowest calculated 

breakeven value is about 40 minutes, and in some configurations the value is infinity, i.e., for any 

fixed penalty the CPR policy outperforms the NR policy. This happens when the percentage of 

unserved users is smaller under the CPR policy. Given that an average duration of a rent is about 12 

minutes, the superiority of the CPR policy continues to hold for any reasonable fixed penalty.  

Another noticeable result is that excess times in Table 3 are lower per offered load and policy as 

compared to the figures reported in Table 2. That is, better results are obtained by setting the initial 

inventories according to the method of Raviv and Kolka (2013). Though this result is not a part of the 

contribution of this study, it addresses the issue of interaction between repositioning and reservation 

policies. As can be seen in Table 3, even if system operators carry out effective static repositioning, 

implementation of the CPR policy can further improve performance. 

We note that when using the method of Raviv and Kolka (2013), the total initial inventory of 

bicycles was 1,268 bicycles, about half the total number of lockers in the system. Clearly, during the 

reviewed period the operators had not dispersed a sufficient number of bicycles in the system. To 

bridge this gap, we leveled the total inventory by uniformly adding bicycles to the actual initial 

stations’ inventories on the randomly chosen day. We ran the simulation with these initial inventories 

as well. The resulting system performance measures were similar to those of Table 2. Hence, the 

difference from Table 3 can be attributed to proper distribution of the bicycles at the beginning of the 

day.  

Next we compare the two policies in terms of the station-availability performance measure. 

Recall that while under the NR policy a user cannot return a bicycle if the station is full, under the 

CPR policy a user cannot make a reservation if all the lockers are either occupied or reserved, i.e., the 

station is blocked. In Table 4 we present the average percentage of time a station is empty or 

full\blocked. In addition, we present the percentage of users who could not rent a bicycle upon their 

first attempt and the percentage of users who could not return a bicycle or make a reservation upon 

their first attempt. In the third to sixth columns we present these figures for the case where the initial 

inventories were taken from a random day. In the last four columns we give the figures for the case 

where the initial inventories were set according to Raviv and Kolka (2013).  
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Table 4: percentages of unfulfilled first attempts to rent or return a bicycle 

 Initial Inventory 

 Actual day Raviv and Kolka (2013) 

Load 

Multiplier 
Policy Empty 

Full\ 

Blocked 

Unfulfilled 

in rent 

Unfulfilled 

in return\ 

reserve 

Empty 
Full\ 

Blocked 

Unfulfilled 

in rent 

Unfulfilled 

in return 

\reserve 

0.5 
NR 6.29% 1.47% 12.17% 2.70% 1.38% 2.16% 2.88% 4.48% 

CPR 6.19% 1.39% 11.80% 2.75% 1.29% 2.08% 2.71% 4.73% 

1 
NR 9.06% 2.25% 16.59% 3.46% 3.07% 3.32% 6.68% 5.96% 

CPR 8.85% 2.06% 15.87% 3.50% 2.86% 3.04% 5.99% 5.92% 

2 
NR 12.92% 3.76% 25.57% 5.09% 5.59% 5.92% 14.42% 9.13% 

CPR 12.28% 3.03% 23.55% 4.25% 4.96% 4.86% 12.02% 8.13% 

4 
NR 19.40% 5.20% 44.55% 5.10% 10.50% 8.77% 28.56% 9.82% 

CPR 17.98% 4.10% 38.76% 3.93% 8.92% 7.23% 22.67% 8.65% 

8 
NR 27.63% 6.14% 78.05% 3.32% 18.16% 11.93% 55.94% 7.72% 

CPR 25.70% 5.00% 68.59% 2.83% 14.96% 9.76% 40.98% 7.42% 

 

For all simulated configurations the percentage of empty and full\blocked stations are lower 

under the CPR policy, that is, the CPR policy is preferable also under the station-availability 

performance measure. As discussed in Section 2, this performance measure does not truly reflect the 

quality of service given to the users because, among other flaws, it does not take into account the 

number of arriving users while the stations are empty or full. This is easily noticed in Table 4 when 

comparing the percentages that appear in the “Empty” columns with the “Unfulfilled in rent” columns 

as well as when comparing the percentages that appear in the “Full\Blocked” columns with the 

“Unfulfilled in return\reserve” columns. Moreover, the differences can be quite significant, to either 

direction.   

Focusing now on unfulfilled requests, the percentage of users who cannot receive service due to 

lack of bicycles (Unfulfilled in rent) is lower under the CPR policy for all configurations. As may be 

expected, in some configurations the percentage of users who failed to make a reservation was higher 

than the percentage of users who failed to return a bicycle (unfulfilled in return\reserve). If the two 

columns are summed, we see that the percentage of unfulfilled requests is higher in the NR policy 

(except for when the load multiplier is 0.5 and the initial inventory is set according to the method of 

Raviv and Kolka (2013)). The situations in which users cannot return a bicycle are typically perceived 

as ones that cause more frustration to the users since they are "trapped" in the system. If indeed a 

higher priority is assigned to securing the ability of users to return the bicycles, the advantage of the 

CPR policy increases.  

Lastly, we demonstrate that the above results are not sensitive to the penalty ratio. The above 

experiment was repeated using higher penalty ratios, namely        . Under these settings, the 

traveling times using alternative modes of transportation (e.g., walking) are three, five and nine times 
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the riding times, respectively. The results of this experiment are reported in Table 5. In the third to 

sixth columns we present the percentage of excess time spent by users in the system for the case 

where the initial inventories were taken from a random day. In the last four columns we present these 

values for the case where the initial inventories were set according to Raviv and Kolka (2013). Note 

that the total ideal times do not depend on the penalty ratio, and therefore they are identical, for each 

load multiplier, to those reported in Table 3. Observe that as the penalty ratio grows, the absolute and 

relative difference between the NR and CPR policy grows, that is, the superiority of the CPR policy 

increases. As the penalty ratio grows, more users will enter the system, that is, the effective load on 

the system will grow. This aligns with the results obtained by increasing the load multipliers.   

Table 5: percentage of excess time spent in the system for various penalty ratios 

 Initial Inventory 

 Actual day Raviv and Kolka (2013) 

Load 

Multiplier 
Policy                                 

0.5 
NR 7.21% 13.04% 25.06% 49.73% 3.90% 5.99% 10.39% 19.90% 

CPR 6.21% 12.10% 23.90% 47.33% 2.59% 4.86% 9.04% 17.27% 

1 
NR 9.77% 18.06% 35.42% 71.07% 6.53% 10.81% 20.03% 38.62% 

CPR 8.31% 16.49% 33.23% 66.90% 4.47% 8.74% 17.13% 33.53% 

2 
NR 15.15% 28.20% 53.61% 105.99% 12.24% 20.98% 38.68% 74.34% 

CPR 12.18% 24.50% 48.19% 96.95% 8.06% 16.14% 32.03% 62.98% 

4 
NR 23.91% 46.42% 85.40% 166.95% 19.24% 34.98% 64.51% 124.19% 

CPR 19.06% 38.31% 73.44% 146.03% 13.22% 26.70% 52.67% 104.46% 

8 
NR 38.66% 79.40% 154.35% 291.59% 30.68% 60.49% 112.69% 212.53% 

CPR 32.58% 67.59% 133.31% 252.19% 21.19% 43.25% 84.51% 165.97% 

 

6. Concluding remarks and future research 

This is the first study on parking space reservation policies in vehicle sharing systems. We view such 

policies as a tool to passively redirect demands and balance inventory levels. Specifically, we show 

that the excess time spent by users in a system managed under the CPR policy is lower compared to 

the excess time in the base policy, for a large range of offered loads. This is demonstrated by both an 

analytical analysis of Markovian models and by a simulation of a real world system. 

Reservation policies also reduce the uncertainty related to the usage of vehicle sharing systems. 

The guarantee that a parking space will be available upon the return of the vehicle at the destination 

can save the time and anxiety associated with the possibility of having to search for a parking space. 

Throughout this study, we compared CPR and NR policies. It may be worth examining “smarter” 

policies. For example: time limited reservation policies, station specific reservation policies or even 

user- based policies that involve reservations. In the CPR policy, a reserved parking space is 
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unavailable until the vehicle is returned. It may be better not to allow the seizing of resources for too 

long. In addition, some users may prefer not to declare their destination in advance. If only some of 

the users reserve in advance a parking space, “revenue management” questions rise. For example, 

how many parking spaces should be kept for users who happen to arrive at the station without pre-

reservation? What kind of incentives should be awarded to users who reserved? 

In addition to the advantages discussed in this paper, we note that by placing or trying to place 

reservations, the users reveal information that is currently not available to the operators of vehicle 

sharing systems. Such information may be useful both for operational and strategic decisions. For 

example, information received via reservations can assist the operators in predicting the near future 

state of the system. This may allow better short term planning of repositioning activities. In addition, 

information on journeys that cannot be realized is collected. Such information is vital when planning 

capacity expansion of stations in the system. 

In this study we have assumed that users act according to the dictated policy regulations. 

However, a user may decide to return the vehicle at a station different from the one in which the 

parking space was reserved. Furthermore, strategic users may declare a different destination than their 

true desired destination, simply to be able to rent a vehicle. It is interesting to examine the effects of 

such behavior on the performance of the system and to determine whether the system should allow 

such vehicle returns. These questions require further research. 

To conclude, the findings of this paper suggest that incorporation of parking reservation policies 

in vehicle sharing systems will improve the quality of service given to the users. Technologically, 

incorporation of parking reservation policies merely requires minor software and, in some systems, 

hardware updates.  
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Appendix A - proof of Lemma 4. 

Lemma 4:  In a NR policy where     , the expected excess time rate due to waiting is a positive 

constant independent of   and  . 

Proof: In this case the expected travel time is negligible. The system state representation can be 

degenerated to account only for the number of vehicles in each station, denoted by   

            . We denote the set of all possible states by  . A rent transition between two possible 

states      is denoted by the following indicator function: 

          {
        (                     ) 

                                                                           
 

The transition rates between any two possible states  ,   are given by:   

 ∑    

   

            

The resulting set of steady state equations are: 

 

∑ ∑                 

       

 ∑ ∑              
    

       

                

An equivalent system of equations can be received by multiplying all equations by 
 

 
 (eliminating   

from all equations). Therefore, the limiting probabilities are independent of   and  . Recall that the 

Markov chain has a finite state space. Assuming that for any station   there exists at least one station   

such that      , the chain is both irreducible and positive recurrent, see Norris (1997). Therefore, all 

limiting probabilities are positive. As a result, when      the expected excess time rate due to 

waiting in a queue, (3), is equal to some positive constant.   


