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Abstract 

In this paper, we study a single-vehicle routing problem with stochastic service times, 

stochastic time-dependent travel times, and soft time windows, where the travel times may 

be interdependent. The objective is to minimize the expected route duration plus penalties 

for late arrivals. The stochasticity is modeled using a set of scenarios based on historical 

data. This approach enables the spatial and temporal interdependencies in the road network 

to be captured. We introduce a specialized branch-and-bound algorithm and a successful 

adaptive large neighborhood search heuristic for the problem. In a numerical experiment 

based on real historical travel time data, we demonstrate the applicability of both methods 

to problem instances of up to 40 customers and 40 scenarios. These dimensions are safe 

upper bounds for instances originating from the field service operation domain. The 

resulting routes are tested on realistic scenarios that were not included in the problem input 

(the training set) to demonstrate the merits of using historical data. Compared with 

solutions that ignore the time dependency and/or stochasticity of the parameters, our 

solutions are consistently superior. 

 

Keywords: Time-dependent, Traveling salesman, Transportation, Vehicle Routing, Field Service Operations 

 

1 Introduction 

Field service personnel spend most of their working day on the road or at their customers’ locations. In 

practice, the scheduling process for such personnel assumes deterministic service times as well as 

deterministic and time-independent travel times. These assumptions simplify the process and allow the 

schedule to be constructed using estimations of the abovementioned times. However, such a solution 

may be suboptimal when implemented in real-life situations including where the service times of some 

customers are considerably longer than planned and cases where travel times are longer due to 

unforeseen events, such as car accidents or extreme weather conditions. Additionally, the distributions 

of the travel times tend to vary, reflecting the different traffic congestion levels during the working day. 
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Recent advancements in mobile computing technology have enabled the collection of real data that 

provide a better understanding of the stochastic and time-dependent nature of travel times. This 

understanding can be exploited in more accurate optimization models. 

Single-vehicle routing and scheduling problems have been largely studied in the context of traveling 

salesperson (TSP)-type problems; that is, a single vehicle departs from the depot no earlier than a 

predefined time and is required to visit and serve all customers during a single working day. The travel 

times between all locations and the service times at the customer locations are assumed to be known. 

Each customer has a time window. Two types of time windows, soft and hard, have been studied. Soft 

time windows allow late arrivals at customer locations, and each late arrival incurs a penalty. The 

objective function, in this case, minimizes a weighted sum of the travel and penalty costs associated 

with late arrivals at customer locations. The existence of hard time windows may cause a problem 

instance to have no feasible solution, especially when travel and service times are stochastic. 

In the above context, most studies have focused on the deterministic and time-independent version 

of the problem. More recent studies have mostly considered either stochasticity or time dependency but 

not both simultaneously. Moreover, the few studies that address these two features simultaneously 

generally assume independence between the various travel times. While this assumption makes the 

analytical calculation of arrival times computationally tractable, it may not hold in real life. In practice, 

congestion patterns in different parts of a road network are similar; thus, the resulting travel times are 

dependent. 

Our approach to considering dependent travel times while maintaining the computational 

tractability of the arrival time calculation is to model the stochastic and time-dependent travel times 

using a set of predefined scenarios. In this paper, we consider the data-driven and time-dependent TSP 

with soft time windows (DD-TD-TSP-STW). We developed a specialized branch-and-bound (B&B) 

algorithm that is capable of solving real-life instances. Then, we devised an adaptive large neighborhood 

search (ALNS) algorithm to find high-quality solutions for the problem in a shorter time. Next, we 

conducted numerical experiments using actual travel time data collected from Google Maps. These 

experiments demonstrated the added value of considering stochasticity and time dependency when 

solving the TSP. 

The rest of this paper is organized as follows: Section 2 reviews the state-of-the-art literature on 

stochastic and time-dependent vehicle routing. Section 3 defines our notation and formally states the 

DD-TD-TSP-STW problem. The solution methods are presented in Section 4, and the numerical 

experiments and their results are described in Section 5. Conclusions and future work are discussed in 

Section 6. 

2 Literature review 

Studies in the domain of vehicle routing often address either stochastic or time-dependent travel times; 

however, few studies consider both aspects simultaneously. In this section, we review the relevant 

literature. Section 2.1 presents the literature concerning time-dependent routing problems. Section 2.2 

presents literature related to vehicle routing with stochastic travel and service times. Section 2.3 surveys 

the few recent papers that simultaneously address the time-dependent and stochastic features of routing 

problems. In section 2.4 we identify the gaps in the literature and point out the contribution of this study. 
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2.1 Time-dependent vehicle routing  

In time-dependent vehicle routing problems, the travel time from a given location 𝑖 to a given location 

𝑗 depends on the time at which the vehicle departs from location 𝑖. Malandraki (1989), Malandraki and 

Daskin (1992) and Hill and Benton (1992) presented mathematical models for the time-dependent 

traveling salesperson problem (TD-TSP) and the time-dependent vehicle routing problem (TD-VRP), 

where time windows and capacity limits exist. The travel times (or travel speed) were given as step 

functions over time. The authors were aware that this representation may result in a violation of the 

FIFO property, i.e., vehicle A may depart from location 𝑖 later than vehicle B but arrive at location 𝑗 

earlier than B. Ichoua et al. (2003) calculated the travel times based on a step function that represented 

the traveling speed over time and considered changes in the traveling speed as time periods were crossed 

during a journey between two locations. This more realistic approach satisfies the FIFO property. The 

resulting travel times are piecewise linear continuous functions of the departure time. Fleischmann et al. 

(2004) demonstrated that a continuous piecewise linear travel time function satisfies the FIFO property 

if the slope of each piece of the function is strictly greater than minus one.  

Haghani and Jung (2005) addressed a capacitated dynamic pick-up or delivery TD-VRP with soft 

time windows. Jabali et al. (2009) considered a capacitated vehicle routing problem (TD-CVRP) with 

stochastic service times. Ehmke and Mattfeld (2012) implemented data mining techniques to process 

large quantities of floating cellular data to estimate TD travel times and incorporated these data into 

vehicle routing models. Verbeeck et al. (2014) studied the TD orienteering problem. An ant colony 

algorithm was devised to solve the time-dependent variant of the problem.  

Cordeau et al. (2014) and Arigliano et al. (2018) studied the TD-TSP with the objective of 

minimizing the duration of the route. Arigliano et al. (2015), Montero et al. (2017), Vu et al. (2018), and 

Arigliano et al. (2019) studied the same problem but with hard time windows (TD-TSP-TW).  Vu et al. 

(2018) applied a dynamic discretization discovery method presented by Boland (2017). Cordeau et al. 

(2014) presented a set of benchmark instances for TD-TSP problem with up to 40 customers, and 

Arigliano et al. (2015) extended this set for the TD-TSP-TW problem. These sets were used by all the 

above studies. 

2.2. Vehicle routing with stochastic travel and service times 

The stochasticity of the travel and service times in VRP can be addressed either by applying a static 

(off-line) solution with the goal of optimizing the expectation of the objective function over all possible 

scenarios or by devising a dynamic (on-line) policy. 

To the best of our knowledge, the first study of off-line models for the stochastic routing problem 

was Laporte et al. (1992). They presented stochastic programming models for the uncapacitated vehicle 

routing problem with deadlines, where the service and travel times are stochastic. Kenyon and Morton 

(2003) studied a similar problem and presented two formulations for the problem: one formulation aimed 

at minimizing the makespan, and the other formulation maximized the probability of completing all the 

routes by some deadline. 

Li et al. (2010) considered routing problems with capacity constraints, soft time windows and a 

constraint on the probability of violating the time windows. Lei et al. (2012) solved a CVRP with 
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stochastic service times, where the duration of the route was constrained. The objective function 

minimized the sum of the travel, service, and expected penalty costs. Tas et al. (2012) and Tas et al. 

(2013) studied a VRP with soft time windows and stochastic travel times. In their model, a penalty is 

associated with early or late arrivals. They proposed a tabu-search (TS) algorithm and a branch-and-

price procedure for the same problem. Souyris et al. (2013) presented a robust optimization method for 

the field service routing problem with stochastic service times and a soft deadline for the starting time 

of the service for each customer. Errico et al. (2013) and Ehmke et al. (2015) studied a VRP with 

stochastic service times and hard time windows where the probability of violating a time window is 

limited.  

Delage (2010) and Binart et al. (2016) studied a dynamic and stochastic VRP-TW and two types of 

requests: mandatory requests with time windows and optional (maintenance) tasks that may or may not 

be performed at any time during the day. The decision which optional tasks to perform and which to 

skip is done on-line and the route is updated accordingly. Errico et al. (2016) solved a similar dynamic 

VRP-TW with hard deadlines where any request may be skipped.  The goal in the above models is to 

maximize the number of requests served on time. 

2.3. Stochastic and time-dependent vehicle routing and scheduling 

Gendreau et al. (2015) surveyed the research in the area of time-dependent routing and noted that the 

literature on stochastic and time-dependent routing is in its infancy. Nahum and Hadas (2009) studied 

the stochastic time-dependent VRP (TD-S-VRP) with the objective function of minimizing the expected 

total travel time. Lecluyse et al. (2009) considered a TD-S-VRP that included the variance and expected 

value of the travel time in the objective function.  Tas et al. (2014) addressed a variant of the TD-S-VRP 

with soft time windows, i.e., the service can start before or after the time window. The objective function 

minimized a weighted sum of the expected transportation costs and penalties for lateness and earliness.  

Duan et al. (2015) solved a TD-S-VRP with hard time windows, that cannot be violated, where the 

support of the travel time distributions was bounded. Verbeeck et al. (2016) studied a stochastic version 

of the time-dependent orienteering problem with hard time windows.  Çimen et al. (2017) extended the 

green CVRP to accommodate time-dependent and stochastic travel speeds. The objective function was 

to minimize the sum of the route duration and fuel costs over all the vehicles.   

 

2.4. The contribution of this study 

All the studies that model stochastic travel times assume (explicitly or implicitly) that these times follow 

independent distributions. We believe that this simplifying assumption largely misrepresents the reality 

of travel times in congested areas, where interdependencies between traffic conditions in close 

geographical locations are substantial. Moreover, since there is a positive correlation between the travel 

times, the independence assumption may lead to plans that are too optimistic and result in many service 

delays. 

In this study, the stochasticity of the travel and service times is modeled by a set of 𝐾 scenarios that 

relate to a single working day rather than by closed-form density distribution functions. While this 

approach may result in sacrificing some accuracy, it has two important merits. 1. It is relatively easy to 

create input for the problem based on historical travel and service time data. 2. Scenarios readily capture 
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the inherent and complicated dependency between the travel times of journeys that are spatially or 

temporally close. 

We note that the generation of scenarios based on the estimation of the travel time distributions is 

neither practical nor desirable in our case since there is insufficient data to approximate the joint 

distribution of the time-dependent travel times. Note also that it is not sensible to use data from the “far” 

history (for example, more than several months ago) since the traffic patterns are rapidly changing over 

time. Therefore, we advocate using travel time observations collected over a period of the last few weeks 

in the network on similar days. The shortfall of this approach is that it is hard to verify the validity of 

the result of each single instance of the problem. We partially overcome this issue by repeating our 

experiments with many different sets of customers and their corresponding travel time scenarios. When 

tested on the travel times in subsequent days, our method consistently delivers better solutions than those 

that are based on average (fixed or TD) travel times. 

The main contribution of this study is to introduce a model and an exact solution method for routing 

and scheduling a single vehicle under time-dependent stochastic travel times and stochastic service 

times, where these times can be interdependent. The stochasticity is modeled by a set of scenarios that 

can easily be collected from GIS systems such as Google Maps. In addition, we present an ALNS 

heuristic for the problem that is capable of delivering near-optimal solutions in a relatively short time. 

We demonstrate the effectiveness of both the exact and heuristic methods using real travel time data that 

are not included in the scenarios used by the algorithm. Finally, we demonstrate the importance of 

considering time dependency and stochasticity rather than following the traditional approach of solving 

the problem based on average times. 

3 Problem definition 

The DD-TD-TSP-STW is stated as follows. A set of customers must be served on a single working day. 

Each customer has a time window for the beginning of the service. The upper bounds of the time 

windows are soft, while the lower bounds are hard. That is, arriving at a customer location after the end 

of the customer's time window incurs a penalty, which is increasing (not necessarily linearly) in the 

extent of the lateness. When the vehicle arrives at a customer location before the beginning of its time 

window, it waits until the window is opened. This choice of time windows represents the practice of 

field service operations where late arrivals may be unavoidable when the travel and service times are 

unknown. However, earlier arrivals can be avoided by idling the technician for some time. 

A single vehicle is available to serve the customers during the working day. The vehicle departs 

from the depot, not before a given time, and returns to the depot after the service of the last customer 

has been completed. The travel time is a function of the origin, destination, departure time, and scenario. 

The service time is given for each customer in each scenario. A solution is a sequence by which the 

customers should be visited to minimize the expected sum of the route duration and penalties for the 

violations of the time windows over all the scenarios. 

To present the problem as a mathematical program, we present the following notation. 

𝑛 Number of customers; 0 represents the depot. 

𝐾 Number of scenarios. 

[𝑎𝑖, 𝑏𝑖] Time window for service at customer’s location 𝑖. 
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𝑠𝑖𝑘 Service time at customer’s location 𝑖 in the 𝑘𝑡ℎ scenario. 

𝑡𝑖,𝑗,𝑘(𝑡
′) Travel time between customer 𝑖 and customer 𝑗 at departure time 𝑡′ for the 𝑘𝑡ℎ scenario. 

We assume that the travel times in each scenario follow the FIFO property. Moreover, 

we assume that the triangular inequality holds in the time-dependent setting. That is, 

𝑡𝑖,𝑗,𝑘(𝑡
′) ≤ 𝑡𝑖,𝑙,𝑘(𝑡

′) + 𝑡𝑙,𝑗,𝑘 (𝑡
′ + 𝑡𝑖,𝑙,𝑘(𝑡

′))    ∀𝑖, 𝑗, 𝑙 = 0,… , 𝑛    ∀𝑘 = 1,… , 𝐾      ∀𝑡′. 

𝐺𝑖(𝑥) Penalty function for late arrival at the customer’s location 𝑖. The exact shape of the 

penalty function is an input of this model and should be determined by the service level 

agreement between the providers and their customers. We assume that 𝐺𝑖(𝑥) is a 

nondecreasing positive function.  

The nonlinear mixed integer programming (NL-MIP) formulation of the problem is presented below. 

Decision Variables 

𝑥𝑖𝑗 Binary variable that equals "1" if customer 𝑗 is visited immediately after customer 𝑖 

𝑢𝑖𝑘 Time when the service of customer 𝑖 begins in realization 𝑘 

𝑜𝑖𝑘 Lateness at customer’s location 𝑖 in realization 𝑘 

𝑇𝑘 Route duration in realization 𝑘  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

𝐾
(∑𝑇𝑘

𝐾

𝑘=1

+∑∑𝐺𝑖(𝑜𝑖𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

) (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

∑𝑥𝑖𝑗 =

𝑛

𝑗=0

∑𝑥𝑗𝑖

𝑛

𝑗=0

       ∀𝑖 = 0,… , 𝑛 (2) 

∑𝑥𝑖𝑗 =

𝑛

𝑗=0

1       ∀𝑖 = 0,… , 𝑛 (3) 

𝑢𝑗𝑘 ≥ (𝑢𝑖𝑘 + 𝑠𝑖𝑘 + 𝑡𝑖,𝑗,𝑘(𝑢𝑖𝑘 + 𝑠𝑖𝑘))𝑥𝑖𝑗       ∀𝑖 = 0,… , 𝑛; 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾 (4) 

𝑎𝑖 ≤ 𝑢𝑖𝑘        ∀𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾 (5) 

𝑏𝑖 + 𝑜𝑖𝑘 ≥ 𝑢𝑖𝑘    ∀𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾 (6) 

𝑇𝑘 ≥ (𝑢𝑖𝑘 + 𝑠𝑖𝑘 + 𝑡𝑖,0,𝑘(𝑢𝑖𝑘 + 𝑠𝑖𝑘))𝑥𝑖0      ∀𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾 (7) 

𝑥𝑖𝑗 ∈ {0,1}    ∀𝑖, 𝑗 = 0,… , 𝑛 (8) 

𝑢𝑖𝑘 ≥ 0     ∀𝑖 = 0,… , 𝑛;      𝑘 = 1,… , 𝐾 (9) 

𝑜𝑖𝑘 ≥ 0      ∀𝑖 = 0,… , 𝑛;      𝑘 = 1,… , 𝐾 (10) 

The model aims to minimize the expected route duration and penalty costs (1). Constraint (2) 

maintains vehicle flow conservation while constraint (3) ensures that all customers are visited. 

Constraint (4) relates the starting times of the service with the routing variables. Constraint (5) enforces 

hard lower bounds on the starting times of the service of customers that the vehicle visits, while 

constraint (6) relates the lateness variables to these times. Constraint (7) relates the route duration with 

the start times of service variables. Constraints (8)-(10) define the domains of the decision variables. 
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Note that (1)-(10) constitute a nonlinear and nonconvex mixed-integer mathematical model that is 

difficult to linearize. 

4 Methodology 

In this section, we present solution methods for the DD-TD-TSP-STW problem. An exact specialized 

B&B algorithm (Section 4.1) and an ALNS heuristic with some SA features (Section 4.2). The two 

solution methods are tested and compared in Section 5. 

We note that in a preliminary experiment, we formulated the problem as a constraint programming 

(CP) model and tried to solve it using the IBM ILOG CPLEX. However, this approach failed to solve 

even small instances of the problem. 

4.1 B&B algorithm for the DD-TD-TSP-STW 

B&B algorithms have been widely used to solve discrete optimization problems in the last 60 years 

(Land and Doig (1960), Little et al. (1963)). In this section, our specialized algorithm is described. First, 

an overview of the algorithm is given, and some of its components are discussed. Next, the more 

involved components of the algorithm are discussed in detail. Section 4.1.1 discusses branching. Section 

4.1.2 discusses lower bound calculations. In Section 4.1.3, we present enhancements of the B&B 

framework that accelerate the running time of the algorithm. 

The pseudocode of the algorithm is presented in Figure 1. 

Decided = empty sequence    /* Sequence of customers already scheduled */ 

Undecided = the set of customers  /* the rest of the customers */ 

Incumbent = the sequence of Undecided sorted by EDD  /* best sequence found so far */ 

GlobalUB = CalcUB (Decided)  /* Calculate the upper bound for the decided sequence 

Create a list L with an entry (Decided, 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑, CalcLB (Decided), GlobalUB)   

While L ≠ ∅     

     Remove a node from L and store as (Decided, Undecided, LB, UB) 

    If LB < GlobalUB 

                𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 =  {𝑖|𝑖 ∈ 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑎𝑛𝑑 𝑖 𝑐𝑎𝑛 𝑏𝑒 𝑛𝑒𝑥𝑡 𝑖𝑛 𝑎𝑛 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛}  

 For 𝑖 ∈ 𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠  

                     LBI = CalcLB((Decided, i))  /* calculate lower bound for the concatenated sequence */ 

                    UBI = CalcUB((Decided, i)) /* calculate upper bound for the concatenated sequence */ 

                    If LBI < GlobalUB 

                            Insert to L ((Decided, 𝑖), 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ∖ {𝑖}, LBI, UBI) 

                           If UBI < GlobalUB 

                                   GlobalUB = UBI 

                                   Remaining = the sequence of customers   𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ∖ {𝑖} sorted by EDD 

                                  Incumbent = (𝐷𝑒𝑐𝑖𝑑𝑒𝑑, 𝑖, 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔)   /* store best found solution to return */ 

Figure 1: Pseudocode of the specialized B&B algorithm 



8 
 

In list L, we store all the open nodes of the B&B tree. Each entry of 𝐿 has four components: a sequence 

of customers for which the route was already decided, a set that contains the rest of the customers, and 

the lower and upper bounds for the node. Clearly, any concatenation of the first component and some 

permutation of the customers of the second component is a feasible solution. 

We initialize 𝐿 with an empty Decided sequence. The Undecided set consists of all customers. The 

lower bound and the upper bound, i.e., the value of a feasible solution, are calculated using the functions 

CalcLB and CalcUB, respectively, as described below. The initial solution of the algorithm is obtained 

as a sequence of Undecided sorted in nondecreasing order of 𝑏𝑖. This solution is referred to as the 

earliest due date first (EDD). The variable Incumbent stores the best solution found so far, while 

GlobalUB represents the value of that solution. 

In each iteration of the process, one node is removed from 𝐿 and stored as (Decided, Undecided, 

LB, UB). Next, 𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠, a list that contains all customers from the Undecided set that can be 

next in the sequence of an optimal solution, is constructed. The algorithm branches on the items on this 

list. That is, new potential entries are constructed by removing a single customer from 𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

and adding it to the end of the Decided sequence. The lower bound and the upper bound for this sequence 

are calculated. If the lower bound of the current sequence is smaller than the global upper bound, the 

entry is inserted back into 𝐿. If the upper bound (value of the feasible solution) of the current entry is 

smaller than the global upper bound, the incumbent solution and the global upper bound are updated. 

The process ends when the list is empty. However, if an approximate solution is desired, other branching 

and stopping criteria may apply. 

The search tree is implemented using a priority queue with the lower bound of each entry as its key. 

Therefore, the next node to be processed at each iteration is the node whose lower bound is the smallest. 

An upper bound for the value of the sequence (Decided, 𝑖) is obtained from the value of the objective 

function when the vehicle follows that sequence and then visits all the rest of the customers according 

to the EDD rule and returns to the depot. The entire path constitutes a valid route since the vehicle visits 

all customers. Recall that to calculate the objective function, we need to evaluate all the scenarios 

considering the time windows and the time-dependent travel times. 

4.1.1 Branching 

In each iteration, the algorithm branches on the customers in the list 𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠. The creation of 

this list relies on the concept of a local precedence relation. This relation is established based on the 

values of the openings of the customers’ service time windows, 𝑎𝑖. 

For the sake of simplicity, we first explain this concept by assuming a single scenario problem and 

denote this scenario by 𝑘. Let us consider a node in the B&B tree. The vehicle has just finished serving 

customer 𝑗 at time 𝑡′ = 𝑢𝑗𝑘 + 𝑠𝑗𝑘. Furthermore, consider customer 𝑚 and customer ℎ that have not yet 

been served. If customer 𝑚 is visited immediately after 𝑗 then 𝑢𝑚𝑘 = 𝑚𝑎𝑥{𝑎𝑚, 𝑡
′ + 𝑡𝑗,𝑚,𝑘(𝑡

′)} is the 

time when the service starts at 𝑚 and 𝑢𝑚𝑘 + 𝑠𝑚𝑘 is the time when the service of 𝑚 ends. Next, if 𝑢𝑚𝑘 +

𝑠𝑚𝑘 + 𝑡𝑚,ℎ,𝑘(𝑢𝑚𝑘 + 𝑠𝑚𝑘) ≤ 𝑎ℎ, then every solution where ℎ is visited immediately after 𝑗 can be 

improved by inserting 𝑚 between 𝑗 and ℎ. Consequently, ℎ cannot be the customer visited after 𝑗 in an 

optimal solution. 
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To see why ℎ cannot be next to 𝑗 in the sequence in an optimal solution, we show that visiting 𝑚 

immediately after 𝑗 and then visiting ℎ is dominating any solution where ℎ is visited immediately after 

𝑗. Recall that the objective function consists of the mean route duration and the sum of the penalties. 

Indeed, by inserting 𝑚 before ℎ, we do not postpone the service end time at ℎ but reduce the route 

duration by saving the need to visit 𝑚 after ℎ. The penalties for ℎ and all the customers that are visited 

subsequently are not increased while the penalty at 𝑚 is minimized (in this branch of the tree). 

We emphasize that the precedence relation between 𝑚 and ℎ is local in the sense that it is valid for 

particular customer 𝑗 and departure time 𝑡′. Furthermore, it is established for a problem with a single 

scenario. However, in the multi-scenario case, if at a particular time, the relation holds for all the 

scenarios, then there is no need to branch on customer ℎ. The algorithm below returns the latest time 

𝑡(𝑗,𝑚, ℎ, 𝑘), where the precedence relation holds for all 𝑗,𝑚 and ℎ in any scenario 𝑘. This algorithm is 

a preprocessing procedure that runs once before the B&B algorithm is launched. 

𝑓𝑜𝑟𝑎𝑙𝑙 𝑘 ∈ {1,… , 𝐾} 

   𝑓𝑜𝑟𝑎𝑙𝑙 𝑗 ∈ {0,… , 𝑛} 

       𝑓𝑜𝑟𝑎𝑙𝑙 𝑚 ∈ {1,… , 𝑛}\{𝑗} 

           𝑓𝑜𝑟𝑎𝑙𝑙 ℎ ∈ {1,… , 𝑛}\{𝑗,𝑚} 

               𝑡′ = 𝑎𝑗 + 𝑠𝑗𝑘 

               𝑤ℎ𝑖𝑙𝑒 𝑚𝑎𝑥{𝑎𝑚, 𝑡
′ + 𝑡𝑗,𝑚,𝑘(𝑡

′)} + 𝑠𝑚𝑘 + 𝑡𝑚,ℎ,𝑘(𝑚𝑎𝑥{𝑎𝑚, 𝑡
′ + 𝑡𝑗,𝑚,𝑘(𝑡

′)}) ≤ 𝑎ℎ 

                   𝑡′ = 𝑡′ + 1 

               𝑡(𝑗,𝑚, ℎ, 𝑘) = 𝑡′ − 1 

Figure 2: Pseudocode for calculating 𝑡(𝑗,𝑚, ℎ, 𝑘) 

For each triplet of distinct customers and a scenario (𝑗,𝑚, ℎ, 𝑘), we first set 𝑡′ to be the minimal 

departure time from 𝑗, namely, 𝑎𝑗 + 𝑠𝑗𝑘. Assuming departure from 𝑗 to 𝑚 at time 𝑡′, the service starting 

time at 𝑚 is 𝑚𝑎𝑥{𝑎𝑚, 𝑡
′ + 𝑡𝑗,𝑚,𝑘(𝑡

′)}, the departure time from 𝑚 is 𝑚𝑎𝑥{𝑎𝑚, 𝑡
′ + 𝑡𝑗,𝑚,𝑘(𝑡

′)} + 𝑠𝑚𝑘, and 

the arrival time at ℎ is 𝑚𝑎𝑥{𝑎𝑚, 𝑡
′ + 𝑡𝑗,𝑚,𝑘(𝑡

′)} + 𝑠𝑚𝑘 + 𝑡𝑚,ℎ,𝑘(𝑚𝑎𝑥{𝑎𝑚, 𝑡
′ + 𝑡𝑗,𝑚,𝑘(𝑡

′)}). We iteratively 

increase 𝑡′ as long as the arrival time at ℎ is earlier than the opening of its service window at 𝑎ℎ and set 

𝑡(𝑗,𝑚, ℎ, 𝑘) to the largest value of 𝑡′ for which the condition still holds. If the condition of the while 

loop never holds, the value of 𝑡(𝑗,𝑚, ℎ, 𝑘) is smaller than the earliest possible departure time from 𝑗, 

𝑎𝑗 + 𝑠𝑗𝑘, and thus, the precedence relation never holds in an actual node of the B&B tree. 

Recall that travel times are time-dependent and therefore gradually increasing 𝑡′ to find the value 

where the precedence relation holds cannot be avoided. However, the FIFO property assures us that if 

the precedence relation does not hold for 𝑡′, then it does not hold for any 𝑡′′ > 𝑡′. 

When the algorithm branches on the next customer to be visited after completing service at 𝑗, if for 

each scenario 𝑘 and some distinct pairs of customers 𝑚 and ℎ in the Undecided set, 𝑢𝑗𝑘 + 𝑠𝑗𝑘 ≤

𝑡(𝑗,𝑚, ℎ, 𝑗), then customer ℎ can be eliminated from 𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠. This procedure is described by 

the pseudocode in Figure 3. 
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𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 =  𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 

𝑓𝑜𝑟 ℎ 𝑖𝑛 𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠   

   𝑓𝑜𝑟 𝑚 𝑖𝑛 𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 \ {ℎ}      

       𝑖𝑓 𝑢𝑗𝑘 + 𝑠𝑗𝑘 ≤ 𝑡(𝑗,𝑚, ℎ, 𝑘) for all scenarios 𝑘 

           𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 =  𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 \ {ℎ} 

           Exit loop 

Figure 3: Pseudocode for building 𝐶𝑎𝑛𝑑𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

4.1.2 Lower bound calculation 

In this section, we present two lower bounds that are valid for our problem and can be used in the B&B 

procedure. The first is based on simple local considerations and is very easy to calculate, while the 

second is based on a solution of an assignment problem and is more computationally involved. 

Interestingly, none of these bounds is strictly tighter than the other, and thus, we calculate both bounds 

at each node of the B&B tree and use the larger bound. 

Our first lower bound is obtained as the sum of a lower bound on the route duration and the expected 

sum of penalties. A lower bound on the route duration at each node can be calculated as follows: first, 

we define a lower bound on the service starting time at each unvisited customer (𝑗 ∈ 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ∖ {𝑖}) 

at each scenario 𝑘, given the service, starting time at the current customer, 𝑢𝑖𝑘 

𝑢̃𝑗𝑘 =  max {𝑎𝑗, 𝑢𝑖𝑘 + 𝑠𝑖𝑘 + 𝑡𝑖,𝑗,𝑘(𝑢𝑖𝑘 + 𝑠𝑖𝑘)} 

The above bound is valid due to the triangle inequality and the FIFO property. Consequently, the route 

duration in scenario 𝑘 satisfies 

𝑇𝑘 ≥ 𝑢̃𝑗𝑘 + 𝑠𝑗𝑘 + 𝑡𝑗,0,𝑘(𝑢̃𝑗𝑘 + 𝑠𝑗𝑘), 

which is the route duration in the relaxed case when only customer 𝑗 is yet to be served. Thus, a lower 

bound on the expected route duration is 

1

𝐾
∑(𝑢̃𝑗𝑘 + 𝑠𝑗𝑘 + 𝑡𝑗,0,𝑘(𝑢̃𝑗𝑘 + 𝑠𝑗𝑘))

𝐾

𝑘=1

. 

 Since this lower bound is valid for all 𝑗 ∈ 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ∖ {𝑖}), a lower bound is obtained by 

max{
1

𝐾
∑(𝑢̃𝑗𝑘 + 𝑠𝑗𝑘 + 𝑡𝑗,0,𝑘(𝑢̃𝑗𝑘 + 𝑠𝑗𝑘))

𝐾

𝑘=1

: 𝑗 ∈ 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ∖ {𝑖}} . 

The lower bound for the sum of penalties is obtained as follows. Let us denote the mean, over all 

the scenarios, of the sum of penalties accumulated up to customer 𝑖, at the current node, by Π. Then, a 

lower bound on the mean total penalties in the branch of the current node is given by 

Π +
1

𝐾
∑ ∑ 𝐺𝑗(max(0, 𝑢̃𝑗𝑘 − 𝑏𝑗))

𝑗∈𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑∖ {𝑖} 

𝐾

𝑘=1

. 
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The lower bound for the objective function is the sum of the two lower bounds. 

The second lower bound for the value of the sequence (Decided, 𝑖) is calculated as the sum of the 

following: (1) the mean accumulated duration of the route up to customer 𝑖 over all the scenarios 

1

𝐾
∑ (𝑢𝑖𝑘 + 𝑠𝑖𝑘)
𝐾
𝑘=1 , (2) the mean accumulated penalty, denoted by Π, (3) the mean remaining service 

time over all the scenarios 
1

𝐾
∑ ∑ 𝑠𝑗𝑘𝑗∈𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑∖ {𝑖}
𝐾
𝑘=1 , and (4) a lower bound for the mean sum of the 

remaining travel time and penalty costs. Next, we establish the latter. Thus, we present the following 

notations: 

𝛿𝑖,𝑗,𝑡′,𝑘 The minimal contribution of arriving at customer 𝑗, at time 𝑡′ or later, after serving customer 

𝑖 in scenario 𝑘, to the objective function value.  

𝑡𝑚𝑎𝑥 An upper bound on the time of the last departure time from a customer 

The values of 𝛿𝑖,𝑗,𝑡′,𝑘 are calculated as follows in a preprocessing procedure. 

𝛿𝑖,𝑗,𝑡𝑚𝑎𝑥+1,𝑘 = ∞            𝑖, 𝑗 ∈ {0,… , 𝑛}, 𝑘 ∈ {1,… , 𝐾} 

𝑓𝑜𝑟𝑎𝑙𝑙 𝑘 ∈ {1,… , 𝐾} 

   𝑓𝑜𝑟𝑎𝑙𝑙 𝑖 ∈ {0,… , 𝑛} 

       𝑓𝑜𝑟𝑎𝑙𝑙 𝑡′ 𝑖𝑛 (𝑡𝑚𝑎𝑥, 𝑡𝑚𝑎𝑥 − 1,…𝑎𝑖 + 𝑠𝑖𝑘  ) 

           𝑓𝑜𝑟𝑎𝑙𝑙 𝑗 ∈ {0,… , 𝑛}\{𝑖} 

                𝜎 = 𝑚𝑎𝑥{𝑎𝑗, 𝑡
′ + 𝑡𝑖,𝑗,𝑘(𝑡

′)} 

                𝛿𝑖,𝑗,𝑡′,𝑘 = 𝑚𝑖𝑛{ 𝜎 − 𝑡
′ + 𝐺𝑗(𝜎 − 𝑏𝑗), 𝛿𝑖,𝑗,𝑡′+1,𝑘} 

Figure 4: Pseudocode for calculating 𝛿𝑖,𝑗,𝑡′,𝑘 

First, 𝛿𝑖,𝑗,𝑡′,𝑘 are initialized to ∞ for each origin 𝑖, destination 𝑗, and scenario 𝑘. Recall that the vehicle 

cannot start serving customer 𝑖 prior to 𝑎𝑖 and therefore cannot depart from 𝑖 prior to 𝑎𝑖 + 𝑠𝑖𝑘. Next, for 

each scenario 𝑘 and origin 𝑖, we iterate over all the relevant departure times, 𝑡′, in descending order. For 

each destination 𝑗 ≠ 𝑖, we calculate the starting time, 𝜎, at 𝑗, assuming departure from 𝑖 at time 𝑡′. Based 

on 𝜎, we calculate the minimal contribution 𝛿𝑖,𝑗,𝑡′,𝑘. This is obtained by recursively taking the minimum 

between the contribution to the objective function assuming departing exactly at 𝑡′ and the value of the 

parameter calculated for 𝑡′ + 1. 

When processing a node (Decided, 𝑖) in the B&B tree, the set of locations that have not yet been 

visited is 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ∪ {0} ∖  {𝑖}. This set is referred to as the 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠. The customers in 

𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 can be reached from the set 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑, referred to as the 𝑂𝑟𝑖𝑔𝑖𝑛𝑠 set. The cardinality 

of the two sets is the same. Recall that the starting time at the last customer 𝑖, in scenario 𝑘, 𝑢𝑖𝑘, is also 

known at the node. 

A lower bound for the remaining travel time and penalties at each particular node is equal to the 

value of a minimal cost assignment of members in the set 𝑂𝑟𝑖𝑔𝑖𝑛𝑠 to members in the set 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠. 

The assignment costs are calculated based on 𝛿𝑖,𝑗,𝑡′,𝑘 as follows: 
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𝑐𝑚𝑗 =

{
 
 

 
 
1

𝐾
∑ 𝛿𝑖,𝑗,𝑢𝑖𝑘+𝑠𝑖𝑘,𝑘

𝑘∈{1,…,𝐾}

                                                   , 𝑚 = 𝑖

1

𝐾
∑ 𝛿𝑚,𝑗,max(𝑢𝑖𝑘+𝑠𝑖𝑘+𝑡𝑖,𝑚,𝑘(𝑢𝑖𝑘+𝑠𝑖𝑘),𝑎𝑚)+𝑠𝑚𝑘,𝑘

𝑘∈{1,…,𝐾}

, 𝑚 ≠ 𝑖

, 

where 𝑚 indexes the origins and 𝑗 indexes the destinations. 

Note that 𝑐𝑚𝑗 is a lower bound on the contribution of the journey from 𝑗 to 𝑚 and the penalty cost 

at 𝑚 at the current node. If the origin is 𝑖 (the current customer at the node), then the departure time in 

scenario 𝑘 is the starting time plus the service time, 𝑢𝑖𝑘 + 𝑠𝑖𝑘. A lower bound on the departure time 

from other origins, 𝑚, is obtained when assuming that 𝑚 is served immediately after 𝑖. The starting time 

at 𝑚 cannot be earlier than the opening of its time window, 𝑎𝑚, as well as 𝑢𝑖𝑘 + 𝑠𝑖𝑘 + 𝑡𝑖,𝑚,𝑘(𝑢𝑖𝑘 + 𝑠𝑖𝑘), 

which is the departure time from 𝑖 plus the travel time. The departure time from 𝑚 occurs 𝑠𝑚𝑘 units of 

time after this starting time. Finally, we note that our lower bound can be further tightened by setting 

𝑐𝑖0 = ∞ to eliminate returning to the depot directly from the current node if there are still unvisited 

customers. 

The idea of using an assignment problem as a relaxation for TSP has been widely used in the 

literature (see Balas and Toth, 1983). However, for the DD-TD-TSP-STW problem, the cost of each leg 

in the relaxation depends on the entire sequence, which is unknown at each node of the B&B tree. 

Therefore, we use a lower bound of this cost and tighten it at the nodes. 

4.1.3 Algorithmic enhancements 

We improved the performance of the specialized B&B algorithm by applying considerations that arise 

from the observation of Lemma 1 below. 

Recall that (Decided, 𝑖) is a sequence of visited customers that ends with the current customer 𝑖. Let 

𝐶𝑖 represent the average penalties over all the scenarios accumulated up to the arrival at customer 𝑖 when 

following the sequence (Decided, 𝑖). Let 𝐷𝑒𝑐𝑖𝑑𝑒𝑑′ represent an alternative sequence to Decided that 

contains the same customers but not in the same order. 𝑢𝑖𝑘
′  and 𝐶𝑖

′ are the arrival time at customer 𝑖 and 

the accumulated penalty in the sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖), respectively. 

Lemma 1: If 𝐶𝑖 ≤ 𝐶𝑖
′ and 𝑢𝑖𝑘 ≤ 𝑢𝑖𝑘

′  ∀𝑘 = 1,… , 𝐾, then the sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑, 𝑖) weakly dominates 

the sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖). That is, there exists an optimal sequence that does not contain (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖) 

as a prefix. 

Proof: We consider two valid solutions for the DD-TD-TSP-STW. The first solution is the sequence 

(Decided, 𝑖, S), where S represents a permutation of the set 𝑈𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ∖  {𝑖}. The second solution is 

the sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖, S). We prove the Lemma by showing that the cost of the sequence (Decided, 𝑖, 

S) is no greater than the cost of the sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖, S). 

Let 𝑗 and 𝑙 denote the first and last customers in S. For customer 𝑗, 𝑢𝑗𝑘 = max (𝑎𝑗, 𝑢𝑖𝑘 + 𝑠𝑖𝑘 +

𝑡𝑖,𝑗,𝑘(𝑢𝑖𝑘 + 𝑠𝑖𝑘)) and 𝑢𝑗𝑘
′ = max (𝑎𝑗, 𝑢𝑖𝑘

′ + 𝑠𝑖𝑘 + 𝑡𝑖,𝑗,𝑘(𝑢𝑖𝑘
′ + 𝑠𝑖𝑘)). Since the FIFO property in the time-

dependent setting ensures that no later departure from origin 𝑖 can result in an earlier arrival at 
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destination 𝑗, 𝑢𝑖𝑘 + 𝑠𝑖𝑘 + 𝑡𝑖,𝑗,𝑘(𝑢𝑖𝑘 + 𝑠𝑖𝑘) ≤  𝑢𝑖𝑘
′ + 𝑠𝑖𝑘 + 𝑡𝑖,𝑗,𝑘(𝑢𝑖𝑘

′ + 𝑠𝑖𝑘); thus, 𝑢𝑗𝑘 ≤ 𝑢𝑗𝑘
′    ∀𝑘 =

1,… , 𝐾. Clearly, a similar analysis can be performed for all customers in S. Therefore, for customer 𝑙, 

𝑢𝑙𝑘 ≤ 𝑢𝑙𝑘
′   ∀𝑘 = 1,… , 𝐾. 

The total duration of the route is the time when the vehicle returns to the depot after serving the last 

customer. For the sequence (Decided, 𝑖, S), the duration is simply 𝑢𝑙𝑘 + 𝑠𝑙𝑘 + 𝑡𝑙,0,𝑘(𝑢𝑙𝑘 + 𝑠𝑙𝑘). For the 

sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖, S), the total duration is 𝑢𝑙𝑘
′ + 𝑠𝑙𝑘 + 𝑡𝑙,0,𝑘(𝑢𝑙𝑘

′  + 𝑠𝑙𝑘). Since 𝑢𝑙𝑘 + 𝑠𝑙𝑘 ≤ 𝑢𝑙𝑘
′  +

𝑠𝑙𝑘  ∀𝑘 = 1,… , 𝐾, the FIFO property ensures that 𝑢𝑙𝑘 + 𝑠𝑙𝑘 + 𝑡𝑙,0,𝑘(𝑢𝑙𝑘 + 𝑠𝑙𝑘) ≤  𝑢𝑙𝑘
′ + 𝑠𝑙𝑘 +

𝑡𝑙,0,𝑘(𝑢𝑙𝑘
′  + 𝑠𝑙𝑘) ∀𝑘 = 1,… , 𝐾. That is, the average duration of the route of the sequence (Decided, 𝑖, 

S) is no greater than the duration of the sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖, S). 

Regarding the penalties, recall that for each customer 𝑝 ∈ 𝑆, 𝑢𝑝𝑘 ≤ 𝑢𝑝𝑘
′   ∀𝑘 = 1,… , 𝐾 and that 

𝐺𝑖(𝑥) is nondecreasing in 𝑥. Thus, for each customer 𝑝, the penalty incurred when following the 

sequence (Decided, 𝑖, S) is no greater than the penalty incurred when following the sequence 

(𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖, S). Since 𝐶𝑖 ≤ 𝐶𝑖
′, we conclude that the total penalties when following the sequence 

(Decided, 𝑖, S) are no greater than the penalties when following the sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖, S). Since the 

cost is the sum of the average route duration and the average penalties, the claim is proven. Therefore, 

there exists an optimal route that does not begin with (𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖). ∎      

The practical implication of Lemma 1 is that branches in the B&B tree that contain the sequence 

(𝐷𝑒𝑐𝑖𝑑𝑒𝑑′, 𝑖) may not be explored since there exists at least one optimal solution outside of these 

branches. To avoid the exploration of such sequences, we cache the values of the dominating sequences 

encountered during the search and compare each new sequence to previously encountered sequences. 

The cache is stored in a hash table (denoted by 𝐴) indexed by the unordered set that constitutes each 

sequence and the identity of the last customer in the sequence, denoted by [{𝐷𝑒𝑐𝑖𝑑𝑒𝑑}, 𝑖]. In the entry 

𝐴[{𝐷𝑒𝑐𝑖𝑑𝑒𝑑}, 𝑖], we store the vector of arrival times at all the scenarios at 𝑖, denoted by 

𝐴[{𝐷𝑒𝑐𝑖𝑑𝑒𝑑}, 𝑖]. 𝑢𝑘, and the average penalties accumulated up to 𝑖 over all the scenarios by 

𝐴[{𝐷𝑒𝑐𝑖𝑑𝑒𝑑}, 𝑖]. C. 

For every sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑, 𝑖) encountered during the B&B, we check whether an equivalent 

sequence, [{𝐷𝑒𝑐𝑖𝑑𝑒𝑑}, 𝑖], exists in the cache. If it does exist, and (𝐷𝑒𝑐𝑖𝑑𝑒𝑑, 𝑖) is not dominated by the 

existing entry, or if it does not exist, we calculate its lower bound and compare it to the global upper 

bound. If the lower bound is smaller than the upper bound, we update the cache (and create a new entry 

if necessary) and a new node in the B&B tree. A new sequence (𝐷𝑒𝑐𝑖𝑑𝑒𝑑, 𝑖) is said to be dominated by 

an existing equivalent sequence if the arrival time at the last customer, 𝑖, for any scenario is not earlier 

than the arrival time in the existing sequence and its average penalty is not smaller. 

By applying this domination rule, the B&B tree is reduced significantly. In some preliminary 

experiments with 18 customers, we observed an approximately six-fold reduction in the running time. 

The effect seems to increase with the dimension of the problem. In terms of memory usage, the space 

needed for the hash table is negligible compared to the reduction in the memory required for the B&B 

tree. 
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4.2 ALNS heuristic for the DD-TD-TSP-STW 

In this section, we present the ALNS heuristic )See Ropke and Pisinger (2006a), Ropke and Pisinger 

(2006b), Pisinger and Ropke (2007)) with SA features )See Kirkpatrick et al. (1983)) that can produce 

high-quality solutions for the problem in a relatively short time and scales better than the B&B 

framework applied earlier. The heuristic is comprised of two stages: a construction stage in which an 

initial solution is created, and an improvement stage. 

The initial solution is constructed using an insertion algorithm. Starting with an empty route, the 

algorithm iteratively selects the best possible insertion until all customers are routed. The best insertion 

is found by checking all the yet unrouted customers and all the possible positions in the existing routes. 

The customer whose insertion at its best position minimizes the average contribution over all the 

scenarios to the value of the objective function is inserted. 

In the ALNS framework, an initial solution is gradually improved by applying various removal and 

insertion heuristics iteratively. In each iteration, one removal and one insertion operator are randomly 

selected based on their current weights. These weights are updated periodically as the search progresses 

based on the performance of the operators. If a newly created solution maintains an acceptation criterion, 

it is accepted; otherwise, the current solution remains the same. The algorithm is terminated once a 

predefined stopping criterion is met. 

The iterative improvement stage of our algorithm combines ideas from the ALNS framework and 

some elements of SA. Next, we describe our proposed removal and insertion operators as well as a 

selection rule for their use. In addition, we present a procedure for updating their weights.  

We define three families of removal operations, namely 𝑘-Random removals, 𝑘-Section removals, 

and 𝑘-cost based removals.  The 𝑘-random removal operator simply selects 𝑘 customers randomly for 

removal. The 𝑘-section operator, removes a sequence of 𝑘 customers along the TSP route starting at a 

randomly selected customer while skipping the depot if applicable. For the cost based removal operator, 

we define a “cost” for each customer which is the sum of the travel cost from the previous customer and 

to the next customer along the route plus its lateness penalty in the current solution.  Based on these 

costs we define a discrete distribution that assigns selection probability that is proportional to the cost. 

We use this distribution to select 𝑘 customers for removals. The members of each of the three operators 

families are defined by a value of 𝑘 ∈ {𝑘𝑚𝑖𝑛, … , 𝑘𝑚𝑎𝑥}. These are external parameters that are tuned 

according to the number of customers. 

The insertion operators define the order by which the removed customers are inserted back to the 

route. Once this is order is determined, each customer is inserted into the position that minimizes the 

total cost after the insertion. We define three insertion operators, namely: random, EDD and cost-based.   

The random operator simply selects a random permutation of the removed customers, the EDD insertion 

operator, orders the customers in increasing order of the upper bounds of their time windows, 𝑏𝑖. The 

cost-based insertion operator, orders the customers in decreasing order of their cost, calculated before 

their removal, as in the k-cost based removal operator. 

The removal operation at each iteration is selected randomly based on a discrete distribution with 

3 ⋅ |{𝑘𝑚𝑖𝑛, … , 𝑘𝑚𝑎𝑥}| possible values that represent the three families of removal operations and the 
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possible values of 𝑘. The probability of selecting operator family 𝑓 with 𝑘 customers is denoted by 𝑝𝑘𝑓 

and is updated every Ω iterations to increase the probability of selecting more successful removals in 

the next block of Ω iterations. Let 𝐶𝑘𝑓 denote the number of times where the 𝑘 − 𝑓 removal operator 

was applied during the last Ω iterations, and 𝑆𝑘𝑓 denotes the number of successful removals. A successful 

removal is defined as a removal that leads to moving from the current solution to a solution with a lower 

cost. We calculate the success rate of the 𝑘 − 𝑓 Removal operator as 

𝑅𝑘𝑓 = {

𝑆𝑘𝑓

𝐶𝑘𝑓
, 𝐶𝑘𝑓 > 0

0, 𝐶𝑘𝑓 = 0

 

At the end of each block of Ω iterations, the probability vector is updated as follows: 

𝑝𝑘𝑓 ← 𝛼
 𝑅𝑘𝑓

∑ 𝑅𝑘𝑓𝑘,𝑓
+ (1 − 𝛼)𝑝𝑘𝑓 , ∀𝑘, 𝑓 

where 𝛼 ∈ (0,1] is an exponential smoothing coefficient. However,  𝐩 is updated only if ∑ 𝑅𝑘𝑓𝑘,𝑓 > 0.  

The probability of selecting each of the three insertion operators is updated independently according to 

the same principals.  

In order to further increase the chance of escaping local optima, the generated solution is evaluated 

using a simulated annealing acceptance criterion. Let 𝑇 represent the current temperature of the search 

process, and 𝑒 (resp., 𝑒′) represents the value of the current (resp., candidate) solution. The probability 

of moving to the candidate solution is min(1, exp (− 
𝑒′−𝑒

𝑇
)). The initial temperature is obtained as an 

increasing function, 𝑍(𝑥), of the value of the initial solution, i.e., the solution generated in the 

construction stage. 

We implemented an adaptive cooling procedure. 𝜔 represents the number of iterations carried out 

between two consecutive updates of 𝑇. Next, in each update, 𝑇 is reduced by ∆ units only if a new best-

known solution has been encountered since the previous update. ∆ is selected proportionally to the initial 

temperature. The proposed cooling procedure deviates from the standard implementation of SA. Its 

merits are in diversifying the search, even at later stages of the procedure, if the best-known solution 

cannot be improved during a large number of iterations. 

Note that since the SA allows movements to solutions that are inferior to the current solution, some 

acceptable moves are not a result of successful removal, and some successful removals do not lead to a 

new best-known solution. 

We note that while our ALNS heuristic borrows ideas from previous studies and in particular from 

Tas et al. (2014) we introduce here two removal and two insertion operators that are specific to the 

problem.   The 𝑘-section removal operator is a good substitute for removal operators that are based on 

proximity, such as the one introduced by  Shaw (1997). Note that most of the applications of the ALNS 

heuristic were for multi-vehicle problems. In the context of single vehicle routing, the 𝑘-section removal 

operator is effective and does not require additional tuning parameters.  The cost-based removal is 

similar to the worst removal, as in Tas et al. (2014). However, it requires significantly smaller 
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computational effort, which is critical in the case of the DD-TD-TSP-STW since an evaluation of a 

solution requires calculating the arrival times in each of the numerous scenarios.   The EDD insertion 

operator is particularly suitable for the problem since the insertion of the customers with the earlier time 

windows affects the lateness of the ones with the later windows but not vice versa. The cost-based 

insertion starts with the insertion of the customers that are potentially more “problematic” while there 

are still many insertion opportunities.   

5 Numerical experiments 

In this section, we present our numerical experiments based on real data presented in Section 5.1. The 

goals of this numerical study are as follows: 

1. Demonstrating the computational tractability of the specialized B&B algorithm as an exact 

solution method for instances with up to 40 customers. Note that in most practical settings, a 

technician serves a much smaller number of customers in a working day. 

2. Evaluating the performance of our ALNS heuristic in terms of both optimality gaps and running 

times. 

3. Demonstrating the merits of considering stochasticity and time dependency in the optimization 

process in real-life settings. 

4. Validating our scenario-based (data-driven) optimization approach as an effective method to 

address the randomness of real-life situations of field service operations. 

To meet goals 3 and 4, we divided the scenarios into a training dataset and a test dataset. The training 

dataset is used as the set of scenarios on which the problems are solved while the test set is used at a 

later stage to evaluate the quality of the solutions when applied for unknown future scenarios. 

In Section 5.1, we describe the dataset used in our experiments. In Sections 5.2 and 5.3, we report 

the performance analysis of the B&B and ALNS algorithms, respectively. In Section 5.4, we compare 

the outcomes of the stochastic and time-dependent model with those of simpler models. Finally, in 

Section 5.5, we validate the scenario-based approach. 

5.1 Problem instances 

To benchmark our algorithms, we used two sets of problem instances. The first set was generated using 

instances from the literature and the second set was based on travel time data that we collected from 

Google Maps over a period of 60 working days.  

The set from the literature was based on instances introduced by Arigliano et al. (2015) for the TD-

TSP-TW. Arigliano et al. (2015) created this set by extending previous instances of the TD-TSP 

originally created in Cordeau et al. (2014). These two datasets are available from 

http://www.emanuela.guerriero.unisalento.it/Downloads.html. The Arigliano et al. (2015) data set 

represents time dependencies by dividing the service area into three zones and introducing the traveling 

speed in each zone at each short period of the day. A distance matrix is given and the duration of each 

journey at each departure time is calculated according to these speeds.  It should be noted that in 

Arigliano et al. (2015) the service times are assumed zero. 

The dataset contains instances with 15,20,30, and 40 customers and a depot. Moreover, the instances 

are characterized by four different types of time windows, from which we selected two that may be 

http://www.emanuela.guerriero.unisalento.it/Downloads.html
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relevant in the context of field service. One type with fixed-length time windows of 80 minutes and one 

type with time windows of variable length, that tends to increase as the working day progresses. The 

length of these time windows is in the range [86,901]. We refer to the former as narrow time windows 

and to the latter as wide.  In total, the Arigliano et al. (2015) dataset consist of 4,800 instances and they 

differ from each other also in the travel time patterns, mean travel speed and the distance matrices. We 

sampled a balanced subset of 48 instances from this data set, 12 for each number of customers, and 

extend them to contain all the required data to our model. 

In order to adapt the Arigliano et al. (2015) dataset to the DD-TD-TSP-STW problem, we generated 

60 scenarios by adding some noise to the speeds in the original data set.  This was achieved by 

multiplying the speed at each period and zone by a random factor that was generated from a random 

walk. The random walk process was bounded between 0.8 and 1.2, with a step size of 0.05 and a 

probability of 
1

3
 to decrease, increase or left unchanged at each period.  The purpose of this mechanism 

was to create statistic dependency in the travel time between consecutive periods. The step size was 

small enough to maintain the FIFO property. Small violations of the triangle inequities in the TD settings 

were fixed by recalculating the all pair TD shortest paths. We refer to this set as AGGG.  

An additional problem set, referred to as AR, was constructed based on a set of 60 locations in 

central Israel where each problem instance involves a subset of these locations. Time-dependent travel 

times between these 60 locations were gathered from Google Maps for a single working day. We refer 

to these travel times as the nominal time-dependent travel times. We denote the nominal travel time 

between locations 𝑖 and 𝑗 starting at time 𝑡′ by 𝑡̃𝑖𝑗(𝑡′). In addition, for a subset of 19 representative 

locations in the set, time-dependent travel time data were sampled in real-time during 60 working days 

between March and June 2017, every 90 minutes (6 times in each day). These travel times are referred 

to as scenario time-dependent travel times, denoted by 𝑡𝑖𝑗𝑘(𝑡
′). Note that these times represent the actual 

travel times affected by the traffic conditions during this period. 

The scenario time-dependent travel times between the rest of the 60 locations were estimated based 

on the data gathered from the subset of the 19 locations as well as their nominal time-dependent data. 

For each pair of locations (𝑖, 𝑗) within the 60 locations, on each day (for a total of 60 days) and for each 

of the six representative times, we found another pair, (𝑖′, 𝑗′). 𝑖′ (𝑗′) represents the location in the subset 

of the 19 locations whose travel time to 𝑖  (𝑗) is the shortest. Next, we estimate the time-dependent travel 

time between locations 𝑖 and 𝑗 as follows: 

𝑡𝑖𝑗𝑘(𝑡
′) = 𝑡̃𝑖𝑗(𝑡

′) ⋅
𝑡𝑖′,𝑗′,𝑘(𝑡

′)

𝑡̃𝑖′,𝑗′(𝑡
′)
. 

That is, we adjusted the nominal time-dependent travel times by the ratio that represents the temporal 

traffic congestion along a similar route. 

We note that this procedure constitutes a reasonable method for obtaining the data required for a 

solution of a stochastic problem in the field service domain. Recall that in field service, each working 

day involves new customers, and therefore gathering the required travel time data for stochastic 

modeling may be very challenging. However, the service zones usually do not change. Therefore, the 

option for gathering (each day and continuously) the time-dependent travel times between a subset of 
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representative (central) locations in the road network and using this detailed data to approximate the 

stochasticity in travel times of other (and new) locations seems both practical and tractable. 

Next, we estimated the travel time at each particular minute 𝑡′ ∈ {𝑡1
′ + 1,… , 𝑡2

′ − 1} during the day, 

where 𝑡1
′  and 𝑡2

′  are two consecutive sampling times, in the representative set of locations by the 

following interpolation formula: 

𝑡𝑖𝑗𝑘(𝑡
′) =

1

90
[𝑡𝑖𝑗𝑘(𝑡1

′)(𝑡2
′ − 𝑡′) + 𝑡𝑖𝑗𝑘(𝑡2

′ )(𝑡′ − 𝑡1
′)]. 

These values were rounded to integer minutes and corrected for very few minor violations of the FIFO 

property. 

We created problem instances with 12, 24, 30 and 36 customers. Twenty instances of each size were 

created for a total of 80 instances. Service times were randomly generated so that the total time spent on 

service was approximately 6 hours a day for all instances. The time windows considered were three 

nonoverlapping time slots of three hours each (over a planning horizon of 9 hours), while the customers 

were equally divided among them. These time windows represent a common practice in the field service 

industry when all appointments are scheduled in advance by the contact center, and the workload is 

balanced.  

A python code that generates the AGGG and AR instances and detailed results of the experiments 

reported below are available at http://www.eng.tau.ac.il/~talraviv/Publications/.   

It is natural to assume that the penalty function 𝐺𝑖(𝑥) is strictly convex to reflect the increasing 

marginal penalty for each additional time unit of delay. Such a function favors several small delays at 

customers’ locations rather than a large delay at a single customer’s location and thus balances the 

service levels for the customers. We used 𝐺𝑖(𝑥) = 𝑥
2. However, we mention that our solution methods 

can be applied to any nondecreasing penalty function. 

Recall that each instance, in both problem sets, has 60 scenarios. We divided these scenarios into 

two sets. Forty scenarios constituted the training dataset, i.e., the input in our experiment. An additional 

20 scenarios composed the test dataset. These scenarios are used to evaluate by simulation the quality 

of the previously found solutions based on new data. This process represents a real-life situation in 

which planning is based on past scenarios, but the results are applied to future scenarios. We note that 

using longer historical data may render the training set non-representative as the traffic conditions 

change over time. We demonstrate below that 40 scenarios are enough to capture the stochasticity and 

create solutions that perform well over the 20 test set scenarios. The advantages of our scenario-based 

optimization over simpler models are already statistically significant when applied to the 20 scenario 

test set. 

The algorithms were implemented as single-threaded applications in Python 2.7 and tested on an 

Intel i9-9900K, 3.6 GHz desktop with 64 GB RAM running Ubuntu Linux 18.04.    

5.2 B&B algorithm 

We solved the instances with up to 40 customers using our B&B algorithm. Table 1 presents the average, 

median, minimum, and maximum total running time until optimality is proven (in seconds) of the B&B 

algorithm for each instance size. We present statistics for subsets of our two problem sets according to 

http://www.eng.tau.ac.il/~talraviv/Publications/
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the number of customers and in the case of the AGGG, to the type of the time windows. Recall that in 

the AR instances the time windows are all non-overlapping slots of 3 hours. 

Table 1: Total running time (seconds) of the B&B algorithm until optimality is proven. 

Instance Width of TW  (min.) Average Median Minimal Maximal 

AGGG, n=15, narrow 80 3 3 3 4 

AGGG, n=20, narrow 80 7 5 5 15 

AGGG, n=30, narrow 80 14 14 13 16 

AGGG, n=40, narrow 80 79 49 41 158 

AR, n=12 180 1 1 1 2 

AR, n=24 180 594 350 42 3,493 

AR, n=30 180 77,319 48,640 714 325,439 

AGGG, n=15, wide 672-97  7 6 5 11 

AGGG, n=20, wide 620-86  226 94 11 849 

 

It is apparent from Table 1 that our B&B algorithm is capable of solving instances of practical size 

with various characteristics. The width of the time windows significantly affects the running time of the 

algorithm. Indeed, most of the AGGG instances with 30 customers and very wide time windows could 

not be solved even within few days while for with narrow time windows instances of up to 40 customers 

were solved very quickly. Note that all the instances with up to 15 customers are solved within a few 

seconds. This demonstrates the applicability of the algorithm to be used as a subroutine for solving 

multivehicle routing problems when the number of served customers in each route is small.  

Recall that our Python implementation is single-threaded. It is likely that more cautious coding 

could result in a significant running time improvement, but this is outside the scope of this study. 

However, much larger instances are unlikely to be solved with reasonable CPU and memory resources 

even with a better implementation of this algorithm. 

In this context, it is relevant to present the performance of an adapted version of our algorithm 

designed to address a time-dependent deterministic TSP with soft time windows (see in detail Section 

5.4 later in this section). That is, we used the same algorithm but with a single scenario that represents 

the average travel time at each time of the day. Table 2 presents the total running time of such an 

algorithm for adapted instances with 15 to 40 customers. 
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Table 2: Total running of B&B time for time-dependent problems 

Instance Width of TW  (min.) Average Median Minimal Maximal 

AGGG, n=15, narrow 80 0.1 0.1 0.1 0.2 

AGGG, n=20, narrow 80 0.1 0.1 0.1 0.2 

AGGG, n=30, narrow 80 0.7 0.4 0.2 2.4 

AGGG, n=40, narrow 80 55* 132 1 n/a 

AR, n=24 180 2 1 1 6 

AR, n=30 180 25 8 6 229 

AR, n=36 180 274 83 54 2,692 

AGGG, n=15, wide 672-97  1 1 1 1 

AGGG, n=20, wide 620-86  4 3 1 11 

AGGG, n=30, wide 92-741 5,988 2,549 189 14,210 

* One of the instances could not be solved to optimality in four hours, however, it reached an 

optimality gap of 0.8% after 1 second. The average is calculated based on all the other instances. 

It is quite clear that our algorithm can efficiently solve time-dependent instances of the TSP with 

time windows in a reasonable time. The improvement here is not only because the algorithm does not 

need to process multiple scenarios but also because of stronger bounds that can be obtained since they 

are established based on the “average scenario” rather than on the best-case scenario. 

Recall that whereas most recent studies assumed hard time windows when time dependency was 

considered, this study addresses the less constraining but computationally harder case of soft time 

windows. Therefore, the results presented in Table 2 are not exactly comparable to those presented in 

Arigliano et al. (2019). We believe that dealing with this case has unique merit in the domain of field 

service. In this industry, the appointment booking at a customer location is often done heuristically. 

Thus, the situation in which a technician cannot meet the customers’ time window on certain days is not 

rare.   

5.3 ALNS algorithm 

We carried out ten ALNS replications for each problem instance. Each replication included 𝑛3 iterations. 

Preliminary numerical experiments showed that the algorithm performs well for Ω = 𝜔 = 𝑛2 and an 

exponential smoothing factor of 𝛼 = 0.4. In addition, 𝑍(𝑥) = 0.1𝑥 and ∆ =  
𝑍(𝑥) 

𝑛3
𝜔⁄

. Moreover, 𝑘𝑚𝑖𝑛 =

⌊
𝑛

5
⌋ and 𝑘𝑚𝑎𝑥 = ⌊

𝑛

2
⌋. Finally, we used initial probabilities 𝑝𝑘𝑓 =

1

3⋅|{𝑘𝑚𝑖𝑛,…,𝑘𝑚𝑎𝑥}|
 ∀𝑘, 𝑓 for the removal 

operators and 
1

3
 for the initial probability of each of the insertion operators. 

Table 3 presents the statistics related to the performance of the ALNS algorithm. We present the average, 

median, minimal and maximal optimality gaps achieved for the larger instances. These were calculated 

based on all the runs of each instance size (that is for the number of instances  ×10 replications). The 

optimality gap was calculated as 100 ×
𝐴𝐿𝑁𝑆−𝑂𝑃𝑇

𝐴𝐿𝑁𝑆
, where 𝐴𝐿𝑁𝑆 represents the value of the solution and 

𝑂𝑃𝑇 represents the value of the optimal solution obtained by our B&B algorithm when available and to 

the best of the ten replication of the hardest instances that we could not solve to optimality. These 

instances are marked in * in the leftmost column. Under “Maximal best of 10”, we present the worst 

optimality gap that was obtained when taking the best result out of the ten replications of each instance. 
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In the rightmost column, we present the average running time of the ALNS algorithm for each instance 

size. 

Table 3: Optimality gaps and average running time of the ALNS algorithm 

Instance 

Width 

of TW  

(min.) 

Optimality gaps Average 

running 

times (sec.) 
Average Median Minimal Maximal 

Maximal 

best of 10 

AGGG, n=20, 

narrow 
80 0.00% 0.00% 0.00% 0.00% 0.00% 94 

AGGG, n=30, 

narrow 
80 0.00% 0.00% 0.00% 0.00% 0.00% 1,192 

AGGG, n=40, 

narrow 
80 0.00% 0.00% 0.00% 0.00% 0.00% 6,738 

AR, n=24 180 0.00% 0.00% 0.00% 0.08% 0.00% 264 

AR, n=30 180 0.24% 0.00% 0.00% 8.00% 2.26% 1,102 

AR, n=36* 180 0.16% 0.00% 0.00% 1.13% n/a 4,615 

AGGG, n=20, 

wide 

-86

620 
0.00% 0.00% 0.00% 0.00% 0.00% 95 

AGGG, n=30, 

wide* 

92-

741 
0.02% 0.00% 0.00% 0.51% n/a 1,170 

AGGG, n=40, 

wide* 

95-

901 
0.06% 0.00% 0.00% 0.51% n/a 6,277 

* Gaps compared to best known (minimal of 10 ALNS runs) 

As expected, the ALNS algorithm scales better than the B&B algorithm and can produce high-quality 

solutions in a reasonable time. We note that when the optimal solution is known, the best solution out 

of 10 replications of the ALNS is typically identical to the optimal solution. Since it is easy to run the 

replications in parallel on a multicore CPU, a heuristic that is based on multiple runs of the ALNS seems 

very attractive. 

5.4 The added value of considering time dependency and stochasticity 

In this section, we evaluate the merits achieved by considering time dependency and stochasticity in the 

optimization process rather than following simpler route planning approaches. As we demonstrated in 

Table 2, the deterministic time-dependent version of the problem is much easier to solve. Thus, the 

question of whether the extra effort required to solve a time-dependent multi-scenario model pays off 

needs to be answered. 

Therefore, we solved three simpler versions of the problem: (1) a stochastic time-independent 

version (denoted by DD-TSP-STW). (2) a time-dependent deterministic version (denoted by TD-TSP-

STW). (3) deterministic time-independent version (denoted by TSP-STW). As input for these three 

special cases of the DD-TD-TSP-STW, we used the relevant averages of the time-dependent and 

scenario data that were used for the full model. 

Next, we applied the optimal solution obtained by each of the methods on each of the 40 training 

and 20 test scenarios. The average gap between the value of these solutions and the solution obtained 

from the full DD-TD-TSP-STW model were compared for both the training and test sets. Recall that the 
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solutions were obtained without considering the test data because it represents unknown future 

scenarios, whereas the training set represents historical travel and service time data. Applying the 

solution to the test scenarios is a simulation of a real-life setting in which decisions are based on past 

data but applied to the future. 

In Table 4 we present these gaps for the AR instances of 24 customers, that are based on actual 

travel times data. For each of the simpler models, we present the average gap (total cost disadvantage) 

compared to the full model as well as its breakdown to the route duration and penalty components. 

Table 4: Average gaps of the special cases of the DD-TD-TSP-STW 

Dataset 
Route duration / 

penalties ratio 

DD-TSP-STW TD-TSP-STW TSP-STW 

Total 

cost 

route 

duration 
penalties 

Total 

cost 

route 

duration 
penalties 

Total 

cost 

route 

duration 
penalties 

Training 78/22 3.8% 0.1% 3.7% 3.7% -0.3% 4.0% 8.4% 0.0% 8.4% 

Test 78/22 3.3% 0.1% 3.2% 3.6% -0.3% 3.9% 7.4% 0.0% 7.4% 

 

The average loss incurred by solving the TSP-STW is estimated by our test dataset to be 7.4%. Both 

stochasticity and time dependency are proven to be important for the optimization process. Neglecting 

the time-dependent aspect of the DD-TD-TSP-STW may result in a loss of up to 3.3% of the total cost. 

Neglecting the stochastic aspect of the problem may result in a loss of up to 3.6%. The advantage of the 

full model over the TD-TSP-STW and the TSP-STW is significant in a one-sided paired t-test with p-

value<0.01. The advantage of the full model over the DD-TSP-STW is marginally significant with p-

value = 0.06. Note that solving the DD-TSP-STW requires a similar computational effort to solving the 

full model; therefore, the latter should be preferred if the time limit allows it. However, in cases where 

the time limit is tight, solving the TD-TSP-STW or using the ALNS heuristic may be considered as an 

approximate solution to the full model.  It is apparent from the table that the cost saved by using the full 

model stems from saving penalties (i.e., improving the reliability of the service to the customers) but 

has no direct implication on the cost faced by the service provider.  

We note that when repeating the same experiment with the AGGG instances, the advantage of the 

full model over all the simpler ones, was much greater than what we observed with the AR instances. 

However, recall that the AGGG instances were generated synthetically and thus, we believe that the 

potential cost saving in a real-life situation is estimated more accurately by the experiment reported here. 

We further observed the schedule of the customers in the optimal solution of the DD-TD-TSP-STW 

and calculated the average lateness of the customers at each slot.  Interestingly, we notice that the 

lateness tends to be larger as the day progress. The average lateness of a customer at the last slot is about 

3.5 times larger than the average of one at the first slot and twice as large as the lateness of a customer 

at the second slot.  Therefore, it may be reasonable to allocate fewer customers to the later slots or to 

define slots in different lengths. However, the allocation of customers to slots is a task that is done before 

the final routing decisions are made and is out of the scope of this study. 

5.5 Validating the use of scenarios 

In this section, we analyze the use of scenarios as a valid means of modeling and optimization in 

stochastic settings. Recall that the data we gathered was divided into a training dataset of 40 scenarios 
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that were used as input for all the optimization algorithms and a test dataset of 20 scenarios that were 

left aside and used to evaluate the solutions. 

We demonstrated in the results reported in Table 4 that the merits of considering stochasticity and 

time dependencey are similar for both the training and test scenarios, which is a first indication for the 

applicability of our approach and for our claim that 40 scenarios constitute a sufficiently large training 

set. 

Next, we aim to verify that our data-driven solution method obtains good routing solutions for each 

scenario in the test dataset. Thus, we optimized the time-dependent deterministic routing problem of 

each scenario in the test dataset separately and with hindsight. This solution is the best solution that a 

planner with complete information could achieve and apply for each particular scenario. Therefore, it is 

a valid lower bound on the value of the solution that can be obtained using any optimization procedure. 

For each test scenario, we calculate the values of the solutions of the DD-TD-TSP-STW using the 

time-dependent data of that scenario. Finally, we calculate the gap between the performance of the best 

solution with hindsight and the performance of our model. We considered the 20 instances with 24 

customers and all 20 scenarios in the test data set and thus calculated 400 relative gaps. The average 

relative gap was 4.15% (with a 95% confidence interval of 3.4%-4.9%). This result implies that the 

optimal solution of the DD-TD-TSP-STW with 40 scenarios cannot be very far from the best possible 

solution of the time-dependent version of the problem. 

6 Conclusions 

In this paper, we introduced a model that captures the stochastic and time-dependent nature of the field 

service routing and scheduling tasks. In particular, our model considers the intricate interdependencies 

between travel times and service times by optimizing over a set of scenarios that are based on historical 

data. We devised an exact solution method as well as a more scalable successful ALNS heuristic. 

Through a numerical study, we demonstrated that our model leads to robust solutions that are, on 

average, better than the solutions of the simpler models that are common in practice and are not 

considerably inferior to optimal solutions with hindsight. An insight obtained from these numerical 

experiments is that it is worth exerting the effort required to solve our more involved model instead of 

models that abstract the stochasticity and/or the time dependency. 

For future research, we note that our model and solution methods can be adapted to other single-

vehicle routing problems outside of the context of field service routing and scheduling. Moreover, our 

solution methods can be used as a subroutine in algorithms that solve multivehicle field service routing 

and scheduling problems when the number of customers served by each vehicle is not large. 
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